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THE DISTURBANCE DUE TO A LINE SOURCE IN A SEMI-INFINITE
ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER

By MARGERY NEWLANDS, Newnham College, Cambridge
(Communicated by R. Stoneley, F.R.S.—Received 14 December 1951)

It has long been recognized that the simple ray theory provides only a very incomplete picture of
the disturbance at a point due to a sudden localized movement in an elastic medium.

In this paper an investigation is made of the disturbance created by a cylindrical pulse (of P- and
S-type) emitted from a line source in a surface layer of elastic material overlying a semi-infinite
medium of different elastic constants and density.

An exact formal description of the motion is obtained in terms of a succession of pulses; the
double integrals corresponding to each are evaluated by approximate methods. It is found that at
a remote point (at or near the surface) there should be felt pulses corresponding to travel by each
one of the minimum-time-paths predicted by the ray theory, and, in addition, a whole series of
diffraction effects. Ray-path pulses are of the same type as the initial pulse, showing the same
‘jerk’ in the displacements (or in the rate-of-change of these); diffraction pulses are in general
‘blunt’, but certain of them become sharper as the surface is approached until, at the surface,
they become part of a minimum-time-path disturbance.

The apparent S- and Sg-anomalies are considered in the light of these results.

At a certain range interference between pulses becomes important, and at very great range the
dispersive Rayleigh wave-train becomes the dominant feature. A further study of the propagation
of free Rayleigh waves shows that an infinite number of modes of vibration are possible. The
degree to which each is excited and the resultant motion is determined in part II; the importance
of the Airy phases is demonstrated.

The pulse representation has a natural extension to systems of any number of layers; before the
corresponding interference pattern at great range can be determined it will be essential to extend
our knowledge of the dispersion of free surface waves to such multilayered systems.
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214 MARGERY NEWLANDS ON A LINE SOURCE

PART I. THE PULSE REPRESENTATION OF THE DISTURBANCE
DUE TO THE LINE SOURCE

1. INTRODUCTION

An unbounded elastic medium possessing rigidity and compressibility can propagate body-
waves of two types, compressional (P-waves) and distortional (S-waves), the latter denoted
by SV when polarized in the vertical plane through the direction of propagation and by SH
when polarized in the horizontal direction.

A plane wave of P- or S-type undergoes reflexion at an interface between different media
according to stationary-time path laws analogous to those of geometrical optics. Similarly,
there arises the idea of a critical angle of incidence, but the phenomenon is more com-
plicated since, supposing the interface to be horizontal, both P- and SV-waves are ordinarily
broken up into four waves, each into reflected and refracted P- and SV-waves; an SH-wave,
however, gives only reflected and refracted SH-waves.

When the medium is bounded by an infinite plane surface it can transmit Rayleigh waves
in which the motion is confined to the neighbourhood of the surface and is partly in the
direction of propagation and partly normal to the surface (Rayleigh 1885). If, in addition,
the system possesses a uniform surface layer of differing properties, then, subject to a certain
condition on these properties, a second type of surface motion is possible in which the dis-
placement is purely horizontal and normal to the direction of propagation (Love 1g911).
These Love waves are dispersive. Generalized Rayleigh waves in systems with one or more
surface layers also show a dependence of phase-velocity on wave-length.

So far no reference has been made to the actual generation of these various possible wave-
types. The practical interest of the study of elastic waves lies in the interpretation of records
of earthquakes or of artificial explosions to deduce the nature of the materials which lie
below the earth’s surface. The above theoretical considerations assume continuous propa-
gation. In practice, the disturbance at the energy source is a pulse of short duration and
at best may be described by a superposition of waves of all frequencies spreading cylindric-
ally or spherically from the source. Nevertheless, the interpretation of records is based
essentially on the simple ideas of reflexion and refraction of P- and S-waves together with
the notion of ‘rays’ along which the energy is propagated and the assumption that, in
general, the record will exhibit arrivals corresponding to the surface Rayleigh and Love
waves. In fact, the seismogram presents a highly complex pattern which cannot be ex-
plained on a simple ray theory. Comparison of earthquake records reveals marked in-
consistencies, considerable scattering of readings, particularly of the ‘ S-phase’ (seismological
notation), without any convincing concentration of frequency (Jeffreys 1946, p. 61);
moreover, the S-phase and the corresponding P-phase are pulses which appear to have
been refracted along the interface between the granitic and ultra-basic rock and up again
to the surface, and on a ray theory their associated energy should be negligible; yet, the
refracted pulses are prominent and, hence, useful features of earthquake and experimental
records. There are also characteristics of the ‘surface wave’, as observed at great distances,
which require more detailed explanation than just the existence of a stationary value of
group velocity giving a maximum amplitude, in particular, the long trains of regular waves
observed to follow the main disturbance.
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 215

Atleast part of the explanation is to be sought in the diffraction effect due to the curvature
of the wave fronts of which the simple ray theory does not take account.

Lamb (1904) first considered the generation of a disturbance in a semi-infinite medium
by the application of a vertical or horizontal impulse along a line in the surface. After
intricate analysis he showed that there should in fact be felt, in succession, just a P-pulse,
an S-pulse and a Rayleigh pulse, the two former abrupt like the initial pulse and the latter
a ‘blunt pulse’ beginning slowly, rising to a maximum and dying away. Lamb indicated
the procedure when the source lay below the surface and the problem was first attacked
by Nakano (1925). His methods were somewhat laborious, and there was a disturbing
inconsistency between the results obtained for an initial harmonic vibration and general-
ization to a pulse; but it seemed probable that in addition to the P-, $- and Rayleigh pulses
should be felt, for initial P- and S-pulses respectively, what he termed a ‘surface S-pulse’
and a ‘surface P-pulse’.

Jeflreys (19264) considered the disturbance due to a spherical explosion in the upper of
two superposed layers. He simplified the problem by neglecting rigidity; by using the
Bromwich expansion method (Bromwich 1916) he was able to resolve the disturbance into
an infinite series of pulses each expressed by a contour integral. He showed that there should
be felt the expected direct and reflected waves, and in addition, contrary to the predictions
of the ‘ray theory’, refracted waves of finite amplitude.

Later (Jeffreys 1931) he investigated the formation of Love waves by a ‘ quasi-symmetrical
pulse of SH-type generated by the sudden application (or removal) of a rotational stress
over a sphere within the upper layer of the crust’. By the same treatment and subsequent
approximation the motion was resolved into a series of pulses, certain of which, Jeffreys
concluded, must be equivalent to the system of Love waves without nodal planes.

Muskat (1933) considered the reflexion and refraction of waves at an interface between
two elastic media of great depth and extent and obtained pulses analogous to the surface
S-pulse and surface P-pulse of Nakano. Pekeris (1948) and Press, Ewing & Tolstoy (1950)
investigated the disturbance due to a source in a liquid layer on an infinite depth of fluid
and solid respectively, but they neglected certain branch-line integrals and studied only
the surface wave part of the motion.

The problem of the disturbance due to a line source of P- and S-waves below the surface
of a homogeneous semi-infinite medium—Nakano’s problem—was reconsidered by Lap-
wood (1949) and lucidly presented using the Sommerfeld method of analysis; Nakano’s
inconsistency was traced to a neglected branch-line integral and the reality of the ‘surface
$’- and ‘surface P’- pulses established. This work should throw some light on the anomalies
of near-earthquake records, but, as Lapwood writes, ‘the hypothesis of a homogeneous
semi-infinite solid means that our work cannot account for phenomena which are due to
stratification... or a variation of velocity with depth’. Thus the corresponding analysis of
the problem of the cylindrical pulse in a stratified medium is likely to be of considerable
seismological interest.

The following discussion treats the case of a semi-infinite medium with a single surface
layer; it is believed that the results will indicate fairly clearly what added complexity may
be expected in a multi-layered medium and what would be the effect of a deep-lying
source.

26-2
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216 MARGERY NEWLANDS ON A LINE SOURCE

2. GENERAL EQUATIONS OF MOTION, AND BOUNDARY CONDITIONS

Let z = 0 be the surface of a semi-infinite medium in which a layer of uniform depth H,
density p, and elastic constants A,, 4, overlies a medium of very great depth and of density
p, and elastic constants A,, u,. It is required to investigate the disturbance at a general point
G within the surface layer due to a cylindrical pulse emitted from a line source L parallel
to the interface and at a depth / below the surface. It is therefore convenient to use right-
handed axes Ox, Oy, Oz with origin in the surface, so that the line source is given by x = 0,
z = h, and the interface by z = H (figure 1). The motion will be two-dimensional and
independent of y.

0 =
T Il G
< ¥
Ij L Y PufaM
77777
/ PNy
' Ficure 1

The equations of small motion of an elastic solid in the absence of body forces may be

written vectorially as 92A
(/H—,u) grad A+uV3v AT (2-1)

where v is the displacement («,v,w) and A = div v (Love 1906). Bromwich (1898) showed
that in a problem of this type the effect of gravity is negligible.

In general, the displacement at a point may be expressed in terms of scalar and vector
potentials ¢ and ¥ by the relation

v = grad ¢+curl ¢, (2-2)
whence the equations of motion take the simple forms
92
(L-20) Vg = 0, (2:3)
92
i = (2:4)
Returning to the two-dimensional problem in which the displacements u, w are functions
of x, z only, we have ¢ Iy o Iy
u:ﬂ+§2’ wzaz—-a—x, (2’5)

where ¥ is strictly the second component of a vector defined by (2-2) and ¢ and ¥ satisfy
' 1 0%

V2¢ = 2082 (2'6)
1 92
V= 2% (27)
9%z 92
Vi= et ]

a=,/(A+2ulp) (velocity of propagation of P-waves),
£ =.J(ulp) (velocity of propagation of S-waves).
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 217

The normal and tangential stresses at any point on an area perpendicular to the z-axis
are zZ and XZ respectively, where

— ou  Odw ow

=t 2) Vi~ (3540 )

dx?2 ' 0xdz)’ (2°8)

—_—

and XZ=u (% +g—%))

=uVi—2u (%2;‘@ —;%SZ) : (29)

3. THE DISTURBANCE CREATED BY AN INITIAL P-PULSE

Jeffreys (1931) has suggested that for a wide class of earthquakes it is probably valid to
approximate to the original disturbance by a pulse varying in time like a simple unit

Heaviside function Hi 1 J. o _d_a_) {= 0 (t<0), (31)
T omloa T e =1 (£>0),

where Q is the line parallel to the real axis in the w-plane from —o0 —ic to -+00 —ic, or any
equivalent contour. We may consider separately the compressional and distortional parts
of the initial disturbance. The solution of the wave equation for ¢ which varies as ei“ and
represents a compressional disturbance travelling out cylindrically from the line source is

$o = mi Hiy(wk,,) ei*, (3-2)

where K, = 0fay, (3-3)
(similarly we shall define x4, ,,, £5,)

w? = x4 (h—2)2, (3-4)

and Hi, is the Hankel function of the second type and zero order (Jeffreys & Jeffreys, 1946,
p. 544). When |k, | is large,

HiO(ZUKal)NA/ 2

K,

exp{—ioK,}, ' (35)

and it is seen that ¢, does in fact represent a wave travelling out from the source with
velocity a,. Also Hiy(wk,,) 0 as |wk,, [->00, providing #(wk, ) <0, consistent with our
definition of @ on the € contour. The factor #i is introduced for algebraic convenience.

By the principle of superposition it follows that when the time variation of the source is
not as e but as H(t), the corresponding ‘total’ displacement potential is given by

1 . o &
D, = §fQ Hiy(wx,,) e“"?w. (3+6)

In order to separate the #, z occurring here in the combination @, we use an extension by
Lapwood (1949, p. 67) of a result of Lamb (1904, p. 4) and write

. 2 [
Hiy(ox,,) = — 5 | exp{Fzl,beosts e (220), (37)

22}
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218 MARGERY NEWLANDS ON A LINE SOURCE
where w2 = x22z2
and Aoy = J(E—12), R(1,)>0. (3:8)

Later we shall introduce 44,, A,,, 45,, defined likewise.
Thus, returning to the problem of a source at depth % in the surface layer, we may describe
an initial P-pulse by
D — _l_f %—’f (—2) exp {TF (h—2) /Idl}cosé'xj—gei“" (0<z<h;h<z<H), (39)
Q 0 o1

271

where corresponding to a single value of w we have

Py = —2fwexp{?f1(/z—z) /Ial}cosé’x%g e (0<z<h; h<z<H). (3-10)
0

o1
We must now satisfy the boundary conditions, that is, the vanishing of the normal and

tangential stresses at the surface and the continuity of displacements and stresses at the
interface. These may be written

_9%, 0/

u=oto continuous at  z = £, (3-11)
ws%~% continuous at  z = £, (3-12)
2Z=pu(20,,+V,,— Vs continuous at z =~/ (3-13)
and vanishes at z = 0, (3-14)

zz = (A+2u) V2%p—2u(é,,+¥,,) continuous at z=~h (3:15)
and vanishes at z = 0, (3-16)

2
where ¢, denotes ai—%, etc. The normal stress at the surface is nullified by an equal and

opposite source at the image line x = 0, z = —4, given by
b, = 2[: exp{—(h+2z) A, }cos Q’x/%iei“" (z=—h). (8-17)
Combining ¢, and ¢, we have
b=ty =—4 [ exp{— i, Jsinh (24, cos é’x% o (0<z<h)  (318)
— 4 f : exp{—zA, }sinh (k) cos gxf—é co (h<z<H). (319)

In order to satisfy the boundary conditions completely, we add potentials ¢ and ¢ to @,
in the surface layer and attempt to describe the motion in the lower medium by suitable
¢ and ¢. The equations (3-11) to (3-16) and the form of ¢,, suggest solutions of the type

¢ = 4Jw (Aexp{—(z—H) A, }+Bexp{(z—H) A,,}) cos {xei**d{,  (3-20)

upper layer (;
v = 4f (Cexp{—(z—H) Ay} +Dexp{(z—H) Ay })sin{xe'dl;  (3-21)

0
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 219

5—4 f " Rexp {—(z—H) A} cos {edl e, (3-22)
lower medium °

V4 f : Q exp {—(z—H) A} sin {xd{ o, (3-23)

Substituting (3:20) to (3-23) and (3-18) and (3-19) in the boundary conditions (3:11) to
(3:17), we obtain six integrals which must vanish for all values of ¥ and so the integrands
must be zero. This leads to six equations in 4, B, C, D, R, Q:

—{A—{B— A5, C+ Ay D+Lexp{—HJ,}sinh (hl,)/A,,

= —(R—1,,Q, (3-24)
— Ay A+, B—{C—{D+exp {—HA, }sinh (k,,)
= ——/loczR_gQa (3'25)

200, A—20,, B+ (202 —«3) C+ (2;2-/(/%) D —2{exp {—H2,,}sinh (hA,,)
= 200, (#o/pt1) R+(2€2“K§2) (Hof11) @, (3-26)
(202 —«3,) A+ (202 —«}) B+205, C—20p, D— (20— «3,) exp {— HA, } sinh (hd,) /A,
= (2§2*K,232) (#afpy) R+-200 W(tofiy) Q5 (3:27)
200, exp {HA,,} A—208,, exp {—HA,} B+ (20—«3,) exp {HA,} C
+(20%—«3,) exp {~H/1ﬂl} D+20exp{—h1,} =0, (3:28)
(20 —«j,) exp {HA,,} A+ (20*—«3,) exp {— HA,} B+ 205 exp {Hl, } C
— 205 exp{—Hlz} D =0, (3-29)

from which each of 4, B, ... is expressible as the quotient of two 6 x 6 determinants. The
common denominator we shall denote by A, and the other six determinants by A,, A,, ...,

so that
A=A7,/A, etc.
It is convenient to write A,, A, ... as follows:

T vy
A, = exp {H(A,,+1,)} S (l—l-?exp{~2H/1ﬂl}+—-3t,——exp{—H(/lm—[—/l )

+% exp {—2HA, } +% exp{—2H(A,, +/1/,,1)}) , (3-30)

where S’ = FS, )
T — _FT,
V=40, (20—x3) T,
Y = — 4l (20—3) T, | (3-31)
W — —FW,
U =FU;

and F() = (202—K3,)2— 400, A,

| R = (2<:2—K,%1>2+4c%1im;} (3:32)
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220 MARGERY NEWLANDS ON A LINE SOURCE
_..g /1/3’1 _.C '—/1,6’2 3
S — /locl _g _/locz _g

—20,  (22—k3) 2l (202—K3) oy |
(282~ K,%’,) - 2&/31 (22— K/zs’z) Hslfhy 2&,32/“2//‘1

“C _/lﬂl *llﬁl /1/3’1
r—| I N S
-—2@1{,‘1 (2§2—/<§1) A (2§2—/</291) (2§2—/<};l) R ¢
(20—x3) 20, 20, —20, 333
—¢ —¢ - =< Ag,
=2, A, oo — 2, ¢ oo
20, —200,, ! 201, (2—«3) . .70
(202—«3,)  (202—«3) . | (28—«3)  —20,
—¢ gy ]
U= “a —¢ |

200, (20%—«3)
(20°—«3) 204, )

The third and fourth columns of 77, V, ... are identical with those of S.
We may remark here that S, 7, W and U are all even in { and V and ¥ odd. Also that

A V=247, (3-34)
42, A exp {—(z—H) A}
= dexp{—zd, +H(A, +14)} [exp{—hd,} 40%,, A5 S
+exp{—hl, —2HN, } 40, 4, T
—exp{—hl,, —H(A,, +24)} 200, (202 —«3) V
Tiexp {+hl,,—H(A,, +24)} 40, (20 —3) Y
Fiexp{d-hd, —2HA,} FW
+exp{£id, —2H(A,, +1,)} FU], (3-35)
42, Agexp{(z—H) A}
= dexp {zd, +H(Ay +25)}  [exp {—hly,—H(A, +A5)} 200, (202 —«5) V
—exp{—hl,, —2HA, } 402, L, W
+%exp {44, —2HA, } FW
Fhexp{+hd, —2H(A,,+1,)} FU
—exp{—hd,, —2H(A,, +2,)} 4%, 45 U], (3-36)
41, Agexp {—(z—H) A4}
= dexp {—2zAp +H(A, +A5)} [—exp{—1id,} 200, (202 —«5) S
+exp {—hd,, —H(A, +15)} 40,45 Y
+yexp{+hl,, —H(A, +24)} FY
+exp {—hd,,—2HA, } 200, (202 —«5) W
+iexp{£hil, —2HA, } 404, (20>—«5) W], (3:37)
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 221
42, Apexp {(z—H) A4,}
= dexp{zdg, +H(A,,+1,)}  [exp{—hl,, —2HA,} 20, (202—«%) T
+exp {—hly, —H(A, +15)} 462, A5 ¥
Fiexp{thd, —H(, +1,)} FY
—exp {—hd,,—2H(,,+14)} 204, (202 —«3) U
Tyexp{thd, —2H(A, +A4)} 401, (202—«5,) U].
(3-38)
For the present attention will be confined to the motion in the upper layer, since we are

primarily interested in surface disturbances. We may now write the formal solution for
this layer in the case of an initial P-pulse as

cp,,—qno,+cp
f do f (—4) exp {1, }sinh (zA,,) cos {x T et

= om Ay

2771]9 f(—exp{ (z— /l“l}+4 exp{(z H)/I“,})Cosgxemdg (0<z<h),
(3:39)

i dC iw
= om JQ f —4) exp {—zA,,} sinh (A4,,) cos {x e ¢

ol

AA 1w
“orilas ey e e H”“l}““exp{(z H)1,.}) cos {xeivrdl (h<z(<H)).
340
V,=¥=_= j f ( Lexp{—(z—H)A }+4A—Dex {(z—H) A })cosgxdgeim
2miJ g 0 p g} A[; p A
(0<z<H). (3-41)
4. FORMAL SOLUTION FOR AN INITIAL S-PULSE

When the original disturbance is an S-pulse then similarly it may be described by ¥,
where

Y, = 2711J‘ de‘ 2) exp{F (h—z) A4} cos{x—je“"‘ (0<z<h; H>z=h). (4:1)
The appropriate image pulse is
¥, = —Lf d—wJ‘wQ exp {— (h+z) A4,} cos é’xd—g e (H>z>0). (4-2)
2m ﬂ
Thus W, = 5 f j 4) exp {—hA, }sinh (z4,,) cos {x—g el (0<z<h), (4-3)
771 o W ﬂl
— — — 1 _é: 10 .
= é_’l—ﬁj\gz—f() (—4) exp{—zA, }sinh (hd,,) cos Cx/{ﬂle ¢ (H>z=h), (4-4)

and the boundary conditions are satisfied by adding potentials ¢ and y as before so that

upper D, 27”]9 f (4heXP{ (z—H) A, } 4 BeXp{(Z H)’{al})ﬂné’xew‘d{ (4-5)

layer ¥ 11f0r+2 : f f (4_expl z— H)/Iﬂl}+4ADexp{(z H)/Iﬂl})cos{xemzdé’
Q
(4-6)

VoL. 245. A. 27


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

222 MARGERY NEWLANDS ON A LINE SOURCE
where A=A, (4-7)
and

4/1/),1AA, exp{—(z—H)A,,}
= d4exp {—zd, +H(A, +A5,)} [exp{—hdy } 200, (202 —~«3 ) S
—exp {—hdy —2HA, } 200, (20% x5 ) T'
TFhexp{hd, —2HA, } 40, (202 —~«5) T
+-exp {—hdg, — H(A, +24,)} 4822, 45, V
+dexp {£hl, —H(d,,+1,)} FV], (4-8)
45 Ap exp{(z—H) A}
= dexp{zd, +H(A, +A,)}  [exp{—hdy —H(A, +15)} 482, 25 V
Tdexp{—hdy —H(A, +15)} FV
—exp{—hly —2HA, } 205 (282 —«5) W
—exp{—/hly —2H(A,, +24,)} 2005 (20%—k5 ) U
Texp{+hly —2H(A, +A5)} 4005 (282 —«3) U],
(49)
4/lﬂlAC,exp{——(z~H) /l/h} )
= 4f:xp{—z/l/91 + H(/lal—l—/lﬂl)} [exp{-—/ulﬂl} 4{,'2/1&1/1/31.9
ZF%eXp{j:h/Iﬁl——QH/Iﬂl}FT
+exp {—hdp, — H(Ay, +A5)} 2004 (20 —43) V
i%exp{j:/z/lﬂl—H(/Ial+/Iﬂl)}4§/1m(2§2~/</2h) Y
—l—exp{—}z/lﬁl —2HA, } 402, /1/5,1 w
+3exp{Lhly —2H(A, + )} FU], (4-10)
405 Ay exp{(z—H) A4 }
= dexp{zly +H(A,, +A5)} [ —exp{—hls —2HA, } 402, Ap T
+jexp{+hily —2HA, } FT
Tyexp{dhly —H(A, +14)} 20, (28—« ) ¥
—exp{—/hly —2HA, } 4%, A5 U
Tdexp{+hd, —2HA, } FU]. (4:11)

5. BROMWICH EXPANSION METHOD APPLIED TO THE EVALUATION OF THE INTEGRALS

In their present form the integrals (3-38, 3-39) and (4'3 to 4-6) cannot be evaluated
exactly or even approximately by any simple method, but we appeal successively to the
‘Bromwich expansion method’ and the ‘Sommerfeld contour distortion’. The latter,
devised for the solution of problems in electro-magnetics (Sommerfeld 1909), was first
applied to geophysical problems by Jeffreys (1926a), and has since had quite extensive
application in this field (Jeffreys 1931; Muskat 1933; Pekeris 1948; Lapwood 1949).
Bromwich (1916) showed that, in general, expansion in negative powers of exponentials
expresses the motion in a series of pulses,
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First we must define the radicals A, 45,, A,,, 4, more exactly, for when the signs of these
are unrestricted the integrands are sixteen-valued functions of {. It may be that owing to
the special form of the integrand two or more of these values coincide, but in general they
require a sixteen-leaved Riemann surface for their representation. We shall confine our-
selves to the “upper leaf” for which Z(A,,), #(45,), #(A,,), %#(A4,) are all >0, consistent with
(3-8) and the vanishing of the displacements at great depths.

The branch points are the points { = + Ky Kpy Ky kg, at which 4, , /lﬁl, ... are
zero and the lines along which the leaves coalesce are the lines Z(4,,) = 0, etc. For a com-
plex w which we shall write as s—ic (s 0, ¢>> 0, since Q or the equivalent contour lies below
the real axis), the line Z(4,,) = 0 is given by

: A = (real and negative),
or writing { = £+ iy, 28n +2sca? = 0,} (51)
E2—n?< (s =) /d.

Equations (5-1) represent arcs of hyperbolas through +«, and the appropriate arcs,

with those corresponding to the A4, 4,, and A4, branch lines, are illustrated in figure 2 for
the cases Z(v) 2 0.

- ~H,
Ko 10 0 Koy 1
g 2
Kag K 3 g
2 /a,
kg, }{ﬁl

—
(a) (b)

Ficure 2. Branch lines in ¢-plane. (a) Z(w) >0, (b)) %Z(w) <0.

It is convenient at this stage to say something about the density and elastic constants.
Just as the disturbance pattern depends only on the ratio of 2: £ and not on their actual
magnitudes so it is governed by the ratios p,:p;, fy: ) and 4,:4,. We shall be particularly
interested in attempting to relate our results to the records of shallow-focus earthquakes
believed to have occurred in the granitic layer overlying a considerable depth of ultra-basic
rock. Neglecting the curvature of the earth and any sedimentary deposits near the surface,
a two-layer system provides a convenient model for such a comparison and accordingly
we take

Polpr = %
=4 | 52
palpy = 2
with Poisson’s condition, A= pu. (5-3)

Jeffreys (1935) uses (5-2), and experiments have shown Poisson’s condition to be reasonably

true for rocks not too far below the surface (see Birch & Law 1935). It will be seen later

how little our main results depend on exact values of constants. With the above ratios we have
By = /3 = }fy = Fay/3,

27-2
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224 MARGERY NEWLANDS ON A LINE SOURCE
so that 0y >0y >y >, (5-4)
or lKa2l<,KM1l<lKﬂ2,<lKﬁll‘ (5'5>

Returning now to the integrals (3-40), (3-41), (4-4) to (4-6) it is seen on closer inspection
that¢,, ¥, are even in A5 ,* so thatregarding { as a complex variable the arc %(1,,) = 0is not
in fact a branch line of the integrand; this is not so of the arcs %Z(4,,), #(1,,), #(14,) = 0,
and in any distortion of the {-path of integration these arcs and any poles of the integrands
are to be avoided. The pair ¢,, ¥, are even in A, only, and it is the cuts R(Ap,)> #(Ay,),
#(Ag,) = 0 together with any poles which must be avoided. Further, we see that each of the
integrals in the {-plane, for a given complex o, is of one of the two forms

0= |60 costra, (56)
X= | GO sintrd, (57)

where G({) is even in { and contains a factor vanishing exponentially on any arc of the
circle at infinity, except possibly in the neighbourhood of the negative imaginary axis
where G({) is O(1/| {|). By suitable manipulation and distortion of the {~contour, Lapwood
(1949, p. 74) showed that y; and x, may otherwise be written

; =3[ GO
(w)>0: ) (5°8)
X =—5 | (60 g,

v =3[ GO
B(0) <0: ) (5:9)
t= 5 | (60 et

where I and I" are large loops in the fourth and first quadrants respectively surrounding
all the singular lines and poles of the integrands therein.

For the initial P-pulse, I' and I" must surround the cuts #(A,,), Z(,,), #(44,) = 0
and all the poles of A, of which «, in figure 3 is supposed to be typical. We saw that this
denominator may be written

A, = exp{H(A, + 5 )} [+ T" exp{—2HA }+ (V' +Y') exp{—H(A,,+ 1)}
+W'exp{—2HA, }+ U exp{—2H(A,,+1,)}]. (5:10)
Now suppose that the w-contour is distorted from the line —o0 —ic to co —ic into a large
semicircle below the real axis, so that everywhere .#(w) <0 and | w | is great. Let the radius
of this semicircle tend to infinity; then, by our choice of that leaf of the Riemann surface on
which 2(,,), %#(4,) =0, we ensure that as close to the cuts Z(1,,) = 0, Z(44,) = 0 as we
like but not actually on them
| T' exp{—2HA,}+- (V' +Y') exp{—H(A,,+14)}+ W' exp{—2HA, }
LU exp {—2H (L, +1,)} <] S| (5:11)

* To see this recombine the A,, Ag exponentials into sinh and cosh terms.
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Thus A, may be written

, T V'+Y'
8, = exp {H(Ay, +2)}S| 1+ g exp {— 2H, } -+ = exp {— H{koy+15.)}

—l—%/—,—exp{—QH/I“l}—l—%exp{—-2H(/lal+/lﬂl)}:|, (512)

and expanded in negative powers of the exponentials, and since any one term is regular on
either side of the cuts it may be evaluated there. Also the w-contour may be redistorted back
to € or any other equivalent form convenient for the evaluation of a particular term.

() (b)
Ficure 3. Distorted {-contour, (2) Z(w) >0, (b) %(w) <O.

Further, because the zeros of A, can only lie inside the loops (i.e. on the cuts) except for the
zeros of §’, the only relevant poles are the zeros of §’, that is, the roots of

F() = o, | (5:13)
and () = o. (5-14)

The equatioh (5-13) is the phase-velocity equation for Rayleigh waves in medium I
(p1> #41541), and it can be shown that it has only one root on the upper leaf of the Riemann
surface. We shall denote it by «,,, where «,, = /y, and y; = 0-9194...4,.

The equation (5-14) is the ‘Stoneley equation’ which determines the velocity of waves
propagated along the interface between infinite depths of mediums I and II. This will be
discussed later, but we let x, denote a possible root of the equation. Expanding the inte-
grands for ¢,, ¥,, ¢, ¥, we see that any one term is also of the form (5-6) or (5:7), so that the
relations (5-8) and (5-9) still apply where now the loops I', I'" must surround the four cuts
R(Ls)s Z(Ap,)s #(As,) #(Ag,) = 0 and the zeros of F({) and S({). Itis convenient to replace
I"by four narrow loops I', , [y , T',,,, T's, close to the cuts as shown and small circles round the
poles I, , etc. By so doing we shall concentrate in a few regions, namely, the neighbourhood
of the branch points and the poles, the main contributions from the integrals.

It is interesting to note that whereas it was remarked earlier that #(A,) = 0 was not a
branch-lineof the ¢,, ¥, integrands, we are now avoiding both the A, and A 4, cuts from con-
siderations of the validity of the series expansions; in agreement with this, we see that
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226 MARGERY NEWLANDS ON A LINE SOURCE

although the complete integrands for ¢,, ¥, were even in 44, any single term in the series
is not. Thus we may expect definite contributions from integration round theloops I, , Iy,
The same is true of the @, ¥, integrals. The expressions for the potentials may now be wr1tten :

(a) For an initial P-pulse (z<h, #(w) =>0):

¢ = %fPQ(exp{* (h+2) A, } —exp{—(h—2) A,}) eiwt—igx%g

_1_ plot—ilx 2 l —
+2Le X (1) 16024, pexp{—(h+2) 4,

(2) 3202, (20>—«3,)? o ?exp{ (h+2z) A, —2HA, }
(3) W_MIY exp{— (H-+h—2) A, —HL,}

o1

(4) SQ_I(iéz__;"ﬂQ r v exp{— (H—h+2) Ay, — Hly)}
| 160,20 5P Y

(5) +12E gexp{— (Hh+2) A, —Hly)
6+ 2 Wexp(— (2H—h—2) 1.}
(7) —%g%yexp{—@fl—l—h—z)/lw}
(8) f P exp{—(2H—h+2)1,)

Fe
(9) + f o exp{(— (2H +h2) L}l

+terms containing 4H, 6H, ... in the exponents; (5-15)
bp=—5 f ettt (1) —8((202—k3,) pexp{— Py —2As)
r
17T
(2) +8§(2§2—K§1)F—gexp{—h/lal—(2H—z) Ag.}
202 — k2 FT hA 2H+2) A4}
(3) —8{( §*Kp1)ﬁ§CXP{— a— ( z) Ag,

(8) — 2 gexp{—(H—h) Ay~ (H-2) 43}

() i g e (= (H—D by (H2) 1)
© + 2P YA~ (=21
(1) — 2B T oxp  (H B Ay (H2) A5

(8) +8L(20—K3) 3w exp{— (2H—1) 4,7y}

(9) — 8Lk} g g P {— (2H+1) Ay — A} L

+terms containing 4H, 6H, ... in the exponents. (5:16)
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 227
(b) For initial S-pulse (z<h, Z(0)>=0):

1 Lo 1
o= g [ i (1) SCR0 ) hexp (2, ~hly)

(2) —8L(20 K)o oxp{—2A,, — (2H—1) Ay}

(3) + 8L k3,) s exp{—2,, — (2H-1) 1,

(4) + f‘« S exp{—(H-2) 4~ (H-1)2,)

(5) ——/%EF—%’exp{~(H—z)/lal—(H+h)/lﬂl}
(6) —f_—gg exp{— (H-+2) 4, — (H—h) 1)}
(1) 4 g exp (= (H+2) Aoy = (1) )

(8) —8L(20—k3) b5 exp{—ly, — (2H—2)A,}

oy W

(9) +8(20k3,) oy exp {— g, — (2H +2) A, } ¢
+. (5-17)

&

o= 3] 2P (= (42 ) —exp (i) ) e
+% j e (1) 162, %exp{——(h—]—z) Ap)
(2) +3200,,(20 — k3, oy xp{— (h+2) kp, —2H, }
(3) —8L20—x3) LY exp (= Ha, — (B h-2) 0,
(4) —80(20— k) L exp{—H,, - (H—h12)d 2

F
(5) +160(2013) 1y & exp{— HAy— (H-+h+2) 4}

2 T
2 FT
(7) —/Tmf,rg—exp{—@H—l-/l*z)/lm}

2 FT

2 F2T
(9) +71;1p*2§ exp{—(2H+h+2) A5 }d{

S (5-18)
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228 MARGERY NEWLANDS ON A LINE SOURCE

Those terms independent of A (and incidentally of the properties of the lower medium)
we shall call zero-order terms, and those with 22/ in the exponent we shall call nth-order
terms.

We notice the similarity of the expressions for ¢, and ¥, and ¥, and ¢, respectively, the
one related to the other by interchange of 4, and A4, 4 and z and substitution of —i for +i,
but we shall see that it is just such an interchange of 4, 4, which can alter the whole form
of the associated disturbance.

o1?

Ka,
T
Lo I, o6 QK
ke,
@
o ""

Ficure 4. ‘Sommerfeld contour’ in the {-plane, #Z(w) > 0.

It is understood in the above that I'is the composite contour shown in figure 4 and that
D, ¥, @, ¥, are derived by subsequent integration with respect to w along ) or any
equivalent contour. When Z(w) <0 the integrands are the same but for a change of sign in
¥, and ¢, the substitution of e¢* for e~i* and the change of contour from I" to I

Thus, #(0) <0: b, = %f eioribry | dg, (5:19)
™
lﬁp: §11J‘ elwt+ilr s¢ dg, (520)
. I"
( 1 oo
¢s — Q;f eloi+ide v dé’, (5'21)
™
¢‘s _ %f elwt+ily v dé’ (5'22)
™

We shall attempt to interpret, as pulses, the terms quoted, and later either extend our
interpretation to the ‘higher-order’ terms or else justify their neglect. The contributions
from each of the loops I',,, I',, I'g,, I's, and the circle I, will be evaluated in turn, but we
shall precede the actual determinations by one or two general considerations.

r

oy

6. THE (-INTEGRATIONS ON [

o [y, I's,: GENERAL CONSIDERATIONS
For the purpose of the following discussion we shall suppose Z () > 0, and that we require
the contribution from the loop I', . A general term of the expressions for ¢,, etc., may be

written .
o] GO P (it bk~ oyt (61)
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where %, and £, are linear forms in £, z, H, and G({) is either odd or even in {. Consider
a general complex w such that Z(v) >0 and |w| is sufficiently large for the exponential
factor to vary much faster than the remainder of the integrand; also x sufficiently great
compared with %, and 4, for the part e=¢ to dominate exp{—%;4,,—%,4,} in the neigh-
bourhood of the branch point «, . Then since #({) becomes increasingly negative as we
recede from the branch point along either side of the loop I, , the main contribution to the
integrand must come from the neighbourhood of «,, and so must be governed by a factor
exp {iwt—ix, x}. It would appear then to represent a pulse which has travelled most of
the way from the source to the observer with velocity «,. Similar interpretations may be put
on the Iy, [, , I'y, integrals. Further, we may deduce the initial and final type of a pulse,
but this qualitative description becomes increasingly incomplete for higher-order terms.

In order to evaluate the expressions like (6-1) we shall introduce a new variable on the
cuts. For example, on I',, we shall put

Ay, = Fiu, (6-2)

where, for #(w) >0, since both %(x,,), %#(4,,) must be >0, we see that .#(1,) must be
positive on the left-hand side of the cut and negative on the right; vice versa for Z(w) <0.
The main contribution comes from the neighbourhood of 4 = 0. Neglecting higher order
terms in ¥ we may write a determinant 7, say, as

7-,(011 I‘al) # T

0,01

+iuT, , (left-hand and right-hand side of cut),

where 7 ,, T} ,, are independent of u, and we may approximate to other coefficients
and to the exponents likewise. Then on manipulation the various integrals reduce to one

or the sum of types

0 1212

Gi(k,,) fo exp {12? }cos () du, (6-3)
0 14772

Gylx,) f “exp {gj‘ } usin (k) du, (6-4)
o 1v2

EN(I fo exp {12’? }uz cos (hu) du, (6-5)

which may be integrated exactly. Assuming that « is large, the importance of a contribution
is determined by the power of x¥ occurring. An integral of type (6-3) gives a power x~.
One of types (6-4) or (6-5) gives x~%, so that (6-5) must not be neglected in comparison with
(6:4).

A relation like (6-2) will be used to approximate to each determinant on each of the cuts
thus defining

0, a2 etc.

SO,;?I) Sl,ﬂp W

7. THE w-INTEGRATIONS: GENERAL CONSIDERATIONS

If f(w) represents any term of ¢, ¢, ¥, or ¥, as determined above for an initial harmonic
vibration of period 27/w, then for an initial unit pulse of the same type we have a contribution

él—,,ifgf(w) %ﬁ, (7-1)

VoL, 245. A, 28
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so long as f{w) is analytic in the region containing € and the integral converges. It will be
found that f(w) always takes one of the forms

(1) wrelor, (7-2)
(2) ZLomelvr, (7-3)
(3) " eloTFbO, ( 4)
(4)  -LorelorFro, (7+5)
the last three approximations being valid except within a narrow sector argw = —4m ¢,

in which f{w) makes a continuous transition from the general form for Z(w) >0 to that for
2% (w) <0.* We cannot avoid this sector if our contour is (. If, however, n> 0 we may replace
Q by Q' proceeding from —oo to +oco through the origin by two loops below the real axis,
thus avoiding argw between — 37 +4-¢. Then f(w) as given by (7-3) and (7-4) is continuous
right up to and through the origin and the integral is seen to converge. If 230 then we shall
consider ¢ or & (and derive ® or U), for differentiation will raise the power of w to a positive
value and ensure that f(w) is analytic and the integral convergent.
Results which we shall use are

1 . dw .
. ~}eior =7 Yop—d .
27Tifgw elr— 2(ir)tn~t H(7), (7-6)
1 . dw .
— ~feiwr 77 __ 4 -t .
2wifgw eler— Lin)tn—t H(7) (7-7)

(Copson 1935, p. 226), applicable when f(w) is of type (7-2),

d
b eior 7 . 1} —% .
2mj +wte it(mr’) " H(1'), (7-8)

where 7" = —7, applicable when f(w) is of type (7-3), and

1 ode 1 p

. Frotior 7 . L7 .
27rif € w  mprr? (7:9)

do 1 7
Fpro+ior I .

2mf toe 0 TP (7:10)

1 T . dw .o _ 1 : 1 1

— | wteTrotior— — i~i(gp)~icostysin (1Y + L), (7-11)
2m ) o w

1 T . da) . _ 1 . 1 1
— | dwteTrotior— — ji(7p)~tcosty sin (3Y —4m), (7-12)
2m ) o 7

where tan ¢ = 7/p, applicable when f(w) is of types (7-4) and (7-5). This second group of
relations may be derived from a result of Stewart (1940, p. 503),

1l a—p0C — 2 ;2)~in €08 .
foa) e ? sin S ur dw I'(n) (p2+71%)" sin ny, (7-18)

where y = tan~!7/p; they are quoted with modifications from Lapwood (1949, p. 66).

* The explanation of the failure of the approximation lies in the fact that as arg w — 47 the four loops
T4y Tays T'gys T'p, close up into a single loop from —ico to —ioo surrounding Koags Kays K,y Kp, o1 the imaginary
axis (see appendix 1); contributions from, say, the neighbourhood of x4 on the loop I'ys then become
increasingly influenced by the proximity of I'g,, I, and I',.
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Owing to the nature of the determinants S, 7, V, etc., it may be that part of an expression
retains the same sign for %(w) Z 0 and the remainder changes sign. The two parts must be
integrated distinctly according to the results above. That part of a coeflicient which retains
the same sign will be denoted by a suffix , and that which changes by suffix ;. Thus we shall
write ‘

Topo = (T0)proE(To)p,1  (#(0) 20), (7-14)
)= (52), = )., ()

o) = (1) = (1) (! R(w) > 0). 715
(S(),al SO a1 SO ay, 0 SO a1 ( ( ) ) ( )

We shall introduce the real positive quantities /)’/175’2, 05/1\052, .. and K5, K5, -+ Where

A\

b1z = (LpE—1/p3)74,  etc., (7-16)
and ki = 0lf By = (G, — 3, etc. (7-17)

It is seen that

(A,) evaluated at the branch-point k5 on I'y = 4«73, (%(0)>0)
and (A4,) evaluated at the branch-point —«g on 'y = —«4 5 (%(0) <0).

On the other hand,
(A5,) evaluated at k4, on Iy, = ik 53,
= (A4,) evaluated at —k,, on I'y,.
Thus comparing our various expressions on

(a) T, and I',, there is a sign change associated with ¢,
(6) Iy, and I",

«p there is a sign change associated with ¢ and A

o

(c) Ty, and I'y,, there is a sign change associated with {, A, and A

oy’
(d) I'y, and I'y, there is a sign change associated with ¢, 4,,, A, and Ay
(¢) T, and I}

y» there is a sign change associated with §, 4, 4,,, 45, and 4.

agd oy

(Until we locate «; (Stoneley pole or poles) exactly, we cannot add a similar statement
about I'y and T'.)

8. THE SHAPE OF THE INITIAL PULSE

By choosing the source to vary in time as a unit Heaviside function we are making a
direct extension of Lapwood’s work (1949) to a layered medium. Our @, ¥, (and ®,
and W) are necessarily identical and the reader is referred to an interesting comparison
Lapwood made (1949, p. 82) between @, given exactly and @, calculated approximately
as an integral on I', (by methods which will be amply illustrated in succeeding sections).

Exactly, we have Oy =—2 cosh“l(%f) H (t—g) ) (81)
1
with the derived radial displacement
0D 2t g @ .
Uo,w——a“a“wJ(“%tz_wz) H(t “1)’ (8 2)

28-2
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232 MARGERY NEWLANDS ON A LINE SOURCE

- 2 %7 “170) i .
or for small a, t/w, Upw = A/(’CUOCI To) (1 0 ) (1 + H(r,), (8-3)
where To = t—w[a,. (8-4)

Figure 5, reproduced from Lapwood (1949, p. 68), shows @, U, ,, as functions of time and
radial distance from the source. The infinities at @ = 0 and £ — zv/ocl mark the failure of
the Hankel function to correspond to physical conditions.

U,
2
o T~ — T T 7
| @
1% a’lt‘-
0 , t g @
: P - g
[
(a) (b)

Ficure 5. @, and U, ,, graphed (a) against ¢, (4) against .

By the approximate method we find

D, =2 J (?9;-11) H(r) (8:5)

with derived displacements (horizontal and vertical)
Uy =/ (%IT) H(r), (8-6)
Wy + =222 (o) HO®), (87

where 7 = {—x/a, — (h—2z)%/2xa,.

Comparison of (8:1) to (8-3) and (8:-5) to (8:7) shows that we have obtained a good
approximation so long as (A—z)/x and ,7,/2w are small; the essential discrepancy is the
failure of (8-6) and (8-7) to record any residual displacement.

We now have some standard by which to assess the accuracy of future approximations.

9. THE EVALUATION OF THE COMPONENTS OF @,, ¥, O, ¥

From our resolution of ¢,, ¥, @, ¥, into a succession of pulses it follows naturally to adopt
a notation ¢p = @+, +,,¢(1)+p¢(2)+ (9-1)
Vp = FO+,YP4..., etc, (9-2)
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 233

where the (1), (2), ... here correspond to the (1), (2), ... in the presentation (5-15) to (5-18).
From the total of forty ‘ zero-order’ and ‘first-order’ terms quoted there, ,¢® will be selected
and its treatment presented in full. This should serve to illustrate all the essential points

arising.
We have
w0 =1 r< 8) Q/{;(;‘gz <) & exp ot —iCe— (H—h-+2) Aoy~ Hlp AL (%(0)>0),
2] (=8) aﬂ‘(;§2 %) Y 5 €Xp {iwt+ilx — (H—h+2z) A, — Ha, } Al (% (0) <0),
. (9-3)
and L0 = __f ¢(4) (9-4)

Now we shall consider in turn the contributions from the four loops and the circle round
the Rayleigh pole (4)«,,, ignoring for the present the possibility of a root of S({) and
additional pole(s) ;. .

7V

(a) Contribution from T" ()

0‘2 bras

(a) 0 (b) g

Ficure 6. Evaluation on T, and I',, (a) Z() >0, (b) %#(v) <0

(i) #(w)>0. Since I, is supposed to lie indefinitely close to the cut Z(4,,) = 0 (figure 6),

we may write on I, ,

Ay, = £iu  (on the left-hand and right-hand side of the cut respectively—see (6-2)).

Again, if | x«,, | is sufficiently large, the main contribution to the integral is provided by
the neighbourhood of # = 0.

Thus §= (A, +K2) =k, —u?[2k,,
and {d{ = —udu.
Also Ay = (= k2)} = (s, + 022,
< ikgy,
and Aoy = (B—xp )t =ikgy,

Write Y=Y, ,+iuY, ,, etc
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234 MARGERY NEWLANDS ON A LINE SOURCE

Taking second approximations to 4,,, 44 in the exponents but only first approximations
elsewhere we find

1 W Kpe(2k2,—K%) . (Y, Y,S
@ - T _ Bros b L1 LoM1
P = 2f0 (—81) =" 1”(30 kY )az

oroe® 0,09 0 R
x exp {iw(t—x/oy— (H—h+z) o, 0, — H|f}) a5)
—iu?(x/2,,— (H—h-+z)[2c575,— H|2¢575,) } (—u) du
+%f (same integrand but with (—iu) in place of (+iu)) du, (9-5)
0

Oy O

since F; ,,=0 and the lowest-order term containing (Y,/S,),, takes the same value on either
side of the cut and gives no contribution.

Thus
2«
, f,g#—sif’—’f“—l%«;{”‘) e | "u2 exp {126, — (H—h+-2) /2675, — H]2673)} du (9°6)

— 420 ) 03(20 — 1B) (aoty— (H— bt 2) &0, — Hf 25) !
X [(¥1)So— Y 5,/S8) [Folay 0™t €27, (9°7)

AN N
where 7 = t—xjay— (H—h+2) /0,0, —HIf o, (9-8)
and at this stage we have extracted the factors w*/af from F, w3/a3 from ¥, and w%/a§ from .S;
no confusion should be caused by retaining the same symbols F,, Y, etc., for the reduced
expressions, which are now non-dimensional constant coefficients depending only on the
properties of the media. In future this procedure will be carried out automatically.

(ii) Z(w) <0. A, A4, A4, are all pureimaginary multiples of w when evaluated at the branch
points =+«,,. Therefore { only is associated with a change of sign. The integrand is seen to
be even in  since ¥ is odd and § even, so taking account of the fact that the loops I',, and
I, are described in opposite directions (relative to the location of the points +ixz and —iu)
we find that the expressions for ,¢$ are identical for #(v)Z0. Therefore, we have

A 5ol 1102
09 — 4,/(2mi) oy 3 (202 /1\/,5’1) _ [ 7}: (%"Ygfl)] ‘2’1;1 f o
By (%0 — (H—h~+2)a, 00— Hfyag)t = 0270 0 /oy o (949)

38 /2 (0% fy) aB(2]a3— 1 |B7) (way— (H—ho+ 2) oy &y — Hf )
X [(¥/Sy— YOSI/Sg)/FO]azT%H(T)) (9-10)

by use of (7-7), which is valid since the contour Qavoids the origin. Hence, by differentiation,

the associated displacements are

U(“ 8.2 (“1 %o/ “2) a3(2/o3 —1/B3) (vay— (H—h+2) OLTELZ_Hﬂl/EQ)“%
X [(Y1/So—YS81/88) [Folay ™ H(7), (9°11)

WD = 8.2 (a3f12y) (2/3—1/B2) (va— (H—h-+2) by 2y — Hf ;)
N X [(Y1/Sy— Y, /SZ)/FOJMT%Hm, (9-12)
and the velocities ,,Uf;‘z) _d ( U®) o r-iH(r), (9-13)

pW;“) = a—t(l,W;‘:)) oc 77HH(T). (9-14)
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 235
Both displacements are seen to have a definite beginning at the instant
AN P
t = xfoay+ (H—h+2)[o 05+ H[B) o,

that is, just such a time after the initial explosion as would be required to travel from the
source to the observer by the path shown in figure 7.

Ficure 7. Path of pulse ,¢%).

This is a ‘minimum-time path’, the disturbance originating as a P-wave in medium I,
striking the interface at the critical angle and travelling close to it as a P-wave in medium IT,
being refracted up as an S-wave in medium I and reaching the observer by reflexion as
a P-wave from the surface. On a ‘ray theory’ such a dlsturbance could only have zero
amplitude, i.e. carry zero energy.

uw

UAT4

Ficure 8. Variation of U, W, U, W at the ,¢@® onset.

Comparing the expressions for ,U, W with those for U, (the ‘direct’ pulse), we see
that the velocities U W, pW(‘*’ have the same form as the displacements in the direct pulse,
that is, the arrival of this ‘refracted pulse’ is marked by a suddenly acquired great velocity,
the initial displacements being zero (figure 8). The amplitude varies with distance approxi-

mately as x~%, while the ratio U:W is seen to be al/izzocz or, with our values of constants,
approximately 9:8. Our approximation is valid only at the beginning of the motion, but
then it is the ‘onset’ which yields the information on the seismic record. It is reasonable to
assume (and the accurate picture of U, supports this) that the displacements increase steeply
but smoothly to a maximum then subside, and that at a sufficiently great distance from
the explosion this component should be felt as a small but sharp pulse.

We may note here that in interpreting a record there is a tendency to select a steep rather
than a large but less sharp displacement as marking the arrival of a definite pulse, so that
it is changes in U, W rather than in U, W which are sought.
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236 MARGERY NEWLANDS ON A LINE SOURCE
(b) Contribution from ', : , ¢
(i) %(w)>0. Now on I', put
A, = Fiu  (left-hand and right-hand side of cut).

Then, near «, , we have
§= (k2 +A2) =k, —u?2,, =K,
{d{ = —udu,
’lﬂl —%i(K@l—l—uz/%@l) = iKﬂlal.
Write Y Y, ,+iuY; , (infact, ¥, , =0)
S =8, o, 1S 4,5 etc.
Thus
1 (—8) (202 —«}) (¥ L
A= %) o /la:lF : (E) exp {iwt—ilx — (H—h+z) A,, — HAg } d{ (9-15)
1 (=(—8) kg5 (262 _K,%’x)(yl) [ : ( S F
= —= o <) | 141w ——~———~) :I
2 0 FO,al SO ay SO FO oy

% exp {iw(t—x/o, —H//)’l/;l) —iu(H—h+z) +iu?(x/2«,, — H[2c:3,) } (—u) du

+% f“" (same integrand but with (—i«) in place of (+ix)) du (9-16)
0

—8k55 (Y, : »
~ B (4 explite—sta— 0

- { f " usin (H—h-+ ) wexp {iu2(x/2¢,, — Hj2c £3,)} du
0
—{—fw (%Jr%‘l) u? cos (H—h+z) uexp {iu?(x/2«,, — H|2x73,)} du} (9-17)
0 0 0
5 a2tk gy, (262, —K5) " (xfk — HJkg3) ™ (Fr/So) o [(H—h-2) + (S, Sy + Fy (o),
< exp fiolt—afon — H|f oy — (H—h-+2)*/2(x2y ~ Hfy2,) ), (9°18)
where we have substituted Fy o = (263, —3)% : (9-19)
Now reducing Y, ,,, etc., by factors ’/a3, etc., we obtain
AN AN
S =—4 /2 (o)) a,) (%0, —Hpyoy)H(2faf—1/B7) 7 (Y1/S0)
Ao HH—h+2z) +o78a,(S,/Sg+F1/Fp)}er,  (9-20)
where 7 = t—xoy— HJf % — (H—h+2)?/2(x0, — Hf ), (9-21)

and provided | xk,, | is sufficiently large and (2H—#+z)/x small.

(ii) #(w)<0. There are sign changes associated with { and 4,,, so that part of the ex-
pression for ,¢% has the same sign for %(v) Z 0 and part changes sign.

With the notation proposed in (7-14) and (7-15) we find

. A~ ~
L = —4/2m i} (o /f0,) (o, — Hfyoy) "H(2[af — 1/fF) !
X{L(Y1/S0) ay, 0@~ H(H—h+2z) €7+ (Y1 8,/S3+ Y, F [So Fy) gy, 00 M0y €197] - (9-22)
+ [(YI/SO)ou, 1“)—%([{_/1'1‘2) elor+(Y,$,/85+ YlFl/SoFo)a,, o e elvT]} (% (0) 20).
(9-23)
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 237
Applying the result (7-6) to the first part of this expression, (9-22), the contribution to

08 is
' . A A .
—4./2m (o /) (%o — HE )7 (2/e} —1/87)"
X {(X1/S0) o, o(H—h+2) 207~ H(7) + (¥151/S5+ ¥ F1/So F)

and compared with the term in 7* that with a factor 7t may be neglected, since our approxi-
mation is only valid for 7 very small.

The displacements U/ and W are derived by direct differentiation. In the same way the
second term of (9-23) will give a contribution which is negligible against that from the
first. To determine the contribution (9- 23) we must consider ,§), for the changing form of
B9 across the imaginary axis of w requires that we use the contour " in the integration.
Thus the contribution to ¢(4’ is

o X 4 itm i H(r)), (9-24)

o1,

42 ib(ay ) (xoy — Hfy )7 (21d — 1B (VfSy)ay 1 (H—h+2) el ((0) 2 0),
| (9-25)
and to ,0P is (using (7-8))
. AN AN . ’
— a2l ffran) (v, — Hyi) ™ (2 —1f2) " (YofSy) s (H—h+2) P H().  (9-26)
To the first order in x, W09 e . 1
D=3 (B9 + =2 40, (9-27)

but we can only conveniently determine the time derivative of the vertical displacement
for reasons evident from the form of (9-23). Thus adding contributions

UL & 4.2 (xoy — Hfy o) ) (2fad— 1Jf7) ! (H—h+-2)
X{(Y1/S0) a0 7 HH(T) —1(Y1/S0) ey, T THH(1')}, (9-28)
and ,W{¥ is given by the combined effect of

D = 8.2 (32— Hfyoy) 7 o1 (202 — 1/B2) ™ (T1/S)) 0
X [rt =14 (H—h+2)%/2(x2, — Hf,a)] H(r), (9-29)

D = —a 2 (v — Hfy ) i (2)ad— 187 (Y,/8,)
x [1'= 7'~} (H—h+2)%/2(xo, — Hfy ) H(r'). (930

‘We may note that the terms neglected in the original approximation (8-16), because

they would have introduced further powers of (xa, —~H,b’/l;cl)‘1, would also have integrated
to give correspondingly higher powers of 7 or 7’. The inclusion of the second terms in (9-29)
and (9-30) is therefore significant. Apart from a constant, , W% = may be obtained by
integration of this last relation with respect to 7.

This disturbance does not have a definite beginning but it is concentrated about the
instant ¢ = x/a, -+ H|f 0, + (H—h+2)?/2(xa, — Hf:a,), which is just the time taken to reach
the observer by the path shown in figure 9. '

This is a minimum-time path predicted by the ‘ray theory’, the disturbance originating
as a P-wave in medium I and reaching the observer by successive reflexions at the surface
and interface as an S-wave and a P-wave respectively.

VoL. 245. A. 29
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238 MARGERY NEWLANDS ON A LINE SOURCE

Returning to the expressions for the displacements, the terms governed by H(7’) provide
a ‘lead up’ to those governed by H(r). Both parts of U imply infinite displacements at the
AN
instant ¢ = x/o; + H|f 0, + (H—h+2)2%/2(xa, ~H/)’:o\cl), and calculation of (Y,/S;),, , and
(Y1/84)a,,1 show that the two parts are in opposite phase; the arrival should therefore be
felt as a double jerk (figure 104).

h L GZI!I
|

/////////

Ficure 9. Path of pulse ,¢%.

(4)
jpUa W

-

Ficure 10. ,U® and , W as functions of 7.

The failure of the Hankel function to represent physical conditions by producing non-
finite jerks is particularly inconvenient when we attempt to obtain a picture of 2D
The additional power of 1/x in the second terms of (9:30) and (9-31) would make them in-
significant for x large (as postulated), but for the fact that at the instant 7 = 0 the factors
7'~} 77% give infinities while the other terms in 7'#, 7% are zero. We shall interpret this as in
figure 10, the 7’7}, 7% terms contributing slight but sharp jerks at the instant 7 = 0, but
otherwise the shape of the pulse being determined by the 74, 7* factors. Thus I, the vertical
displacement, should appear as a brief oscillation modified by a slight jerk at the instant
t= x/ozl—I—H/,é’:;cl—{— (H —h+z)2/2(xoclm—H/5’:zcl), this jerk decreasing in relative importance
with increasing distance from the epicentre. ’

(c) Contribution from L'y, : ,¢%)
(i) #(w)>0. Now on Iy, put
A py = +iu (left-hand and right-hand side of cut).
Then, near kg, (= (K§2%u2)* = Kp,—UP[2Kp, = Kg,
{d{ = —udu, ,
= ((2—k2)} = Kpom (V=220 575 ) = /Cﬁ’zzll,
Agy = (k) =ik, (L +u?/2c5,) =1kg,
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Write Y = Y, p,4iuY, 4, etc. (note: Fyz=0).
Thus

w _ L[ —80 (202 —«3)
P Ay F

o1

(-Ig) exp {iwt—ilx— (H—h+2) Ay, — HA, }d¢

0 — 23
T{ f 8ix 5, 2’% Kj) iu (5 ¥ Of ‘) X (—u) exp {iu?(x/2x,,— H|2 53, } du
. 2 Kﬁzdl 0, ﬂz SO SO ﬁZ

+—2—f (same integrand but with (—ixz) in place of (4-ix)) du}
0

X exp{wt_lgx (H—h+2) Ay — Hig} (9-31)
(the lower-order terms cancelling on the two sides of the cut)
S8k S (2% — k2
= SEREE ) (N T8 exp (s aipy— HIF R~ (H—h2) 53)
Kﬂz a FO, B2 SO SO B2

X fw u? exp {iu?(x/2x 5, — H|2x 573,) } du
0
= 8k §3,(263,— k5,) (K 75, Fo, p,) ™ (X1/S0—Y051/58) 4,
. A .
x exp{io(t—x/fy— H|p\ f3) — (H—h+2) kg5 i1 (37) (%/Kg,— H]k53,) 7Y (9-32)

and reducing Y, 4, etc., by factors w’/43, etc., we obtain

B = 427 (2)B3—1/82) frs B3P (e — HEBy) 07t (Y Fy Sy — Y8,/ FySB) pyembotior,

s (9-33)
where %
T= t—x/ﬂz_H/ﬂfz’} (9-34)
— (H—h+2) 5.

(i) #(w)<0. There are sign changes associated with {, 1, and 4, so that with the
notation of (7-14) we find

] _ A~ A\ AN
WP = 42 (2[P3—1[PY) Pron 35, B2 (#fa— HE By) T 0™
X{(Y1/FoSo—YoS1/FoS5) gu,1 €720 17 1 (11/Fo So — Yo 51/ FyS8) gy, 0 €749 1073 (9-35)

The form of either part of this expression means that to determine the contribution corre-
sponding to the initial unit pulse we must consider ,i%), say, and derive , U by integration

on Q': 1 do
@ a2
WUl = 21r1f PE "y T om f Bs it do,
and using the results (7-11) and (7-12) we find

LU — 4.2 frat By BY(2IB— V1B (xBy— HE By) ~F (H—h+2)™
X cost Y{— (V3/Fy Sy — Yy S1/Fy S3) gy oSin (38— 1) +i(X/FySg— Yo S,/ FyS3) 5, 1 sim (3 + 1)},
where tany = 7/p. (9-36)
Similarly
@ — 4 23 fa B 21— 1IR3 (xBy— HE Bo)~ (H—h+2)~
xcos* YT, /By Sy — Yy 1/ FyS3) gy 1 50 (39— 1) + (1o Fy Sy— Yo S1/FyS3) 5, o510 (39 +37)).
(9-37 )

29-2
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240 MARGERY NEWLANDS ON A LINE SOURCE
costy sin (3Y +4m), —Fm<Y<im,
is shown in figure 11a as a function of 7. It is easily verified that it has a maximum at

¥ = ¥ corresponding to

! AN N
T = t—x|fy— H|f\fo=(H—h+2)[/3 2
(i.e. same for all x) and decreases steeply towards negative 7 and more gradually towards
large positive 7, in both directions to the value zero. Also, the function

cost ¢ sin (3¢ — )
| —costy sin (=¥ +1m),
and its graph is therefore derived from figure 11(a) by successive reflexions in the two axes
(see figure 11(5)).

The function

may be written

costy s"in(;zg"'ziZ ) cos%‘lfsm(%f_g)

A :
0 | V

(a) (b)

Ficure 11. (a) the function cost ¢ sin (33 + }m), (b) the function cos? ¥ sin (§3f — 4mr).

- (4) W4
P'Uﬁz P
\?\
, / :
0 T 0
(a) (b)

Ficure 12. (a) ,UP, (b) ,W§P, as functions of 7.

Each of U and W is given then by the algebraic sum of multiples of these.two functions.
It is evident from the relevant factors in (9-36) and (9-37) that if the two parts of U are in
phase the two parts of W are in opposite phase and vice versa. Calculation shows that the

rate (Yi/FoSo—YoS1/FyS8) g0 111/ FoSo—= Yo 1/ Fo'3) g

is approximately equal to 5:2. The displacements should therefore vary roughly as in
figures 12 (a) and (b), U dominated by the cos! ¢ sin (3 — }) function and W by the other.
Validity of the results will depend on the smallness of 74,/x, so that we may expect the

estimated value and slope of U, W at 7= 0 to be good and the location of the peak to
increase in accuracy with distance x.


http://rsta.royalsocietypublishing.org/

A A

JA '\

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
1~

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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(d) Contribution from L'y, : , 69
(i) #(w)>0. Now on Iy put

Ag, = +iu (left-hand and right-hand side of cut).

Then, near g4, §= (kj,—u®)} = kp — 12265, = Kp),
(d¢ = —udu,
/ldl = (€2~K2 )% = Kﬂlocl
Write Y =Yy p%inY, 5, etc. (note: Y ,=0).
Thus
—8) (A, (282 —«3) (Y .
S =2 . (—8) /{LEF ) (?) exp {lwt——lgx—(H—lz—l—’z) Aoy —HAg }d§
o (—8 2 .
= _% . ’5@11)7:?21 (Z;Q)ﬂliu exp {iwt —ixkg, +iux/2xp —iuH—~(H—h+2z) k735} (—
—l—%fw (same integrand but with (—i«) in place of ( +iu) du (9-38)
— 8k, (—IQ)) exp {iw(t—x/f,) —(H—h+2z) /</\}fmu2 cos Hu exp {iux/2«x, } du
KﬂxulFO A SO A 1 Praa 0 1
=4,/2 n*l*KﬁlK;/l;(Yo/FOSo)ﬂl x~Vexplio(t—x/f, — H?[2xf)) — (H—h+2z) k535}. (9-39)
Substituting Fo g =«
and reducing Y, 4, etc., by factors /4%, etc., we obtain
P = 4 2 f@ fla (ToiS) g epuior, (9-40)
where p= (H—/z—f-Z)/ﬂ:;cl, } (9-41)
T = t—x/f,—H?/2xp,.

(ii) #(w)<0. There are sign changes associated with ¢, Augps Agys Ag,, but we find, with
the notation of (7-14), that (Yo/So) pr.0=0, | (9-42)
and therefore we have

WP = 4218 BN (T[S, 07 100 (R (w) 2 0). (9-43)

Again, in order to obtain the response to an initial unit pulse, we are obliged (by the
occurrence of the factor »~* in the above) to consider,i®, ,w{. Then

WU =g [ a0 = oL [ (ip) it do, (9-44)
1 d 1
and WP =g [ 0 = o [ (Fiolf) e (@0)20),  (9:45)

and using the results (7-11) and (7-12) we arrive at

WU = 4247 Frat s (H=h+2)7 (T/S))p, 008 ¥ sin (W +4n), (9-46)
PV = a2 B ot o (H—h+2) 7 (YSo)p, r 008t sin (W — ), (947)
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242 MARGERY NEWLANDS ON A LINE SOURCE
where . tany =7/p, (9-48)

valid so long as x is sufficiently great compared with H, %, z and f, 7/x is small.

We see that these expressions are simpler than those contributed by I';, although of the
same type. Their variations are described by figures 11 () and (b), and the ratio of the maxi-
mum velocities U, : W, (occurrlng before and after the instant ¢ = x/f; + H?/2xf,

max.

respectively) is given by the ratio ﬂl a :fy, 1.e /31 /2.

() The contribution from ' p¢(4)

(1) #(w)>0.
1 — 80, (280%—«3) (Y Co

P = 5l ﬁ;{alF £ (3) exp {iwt —ilx — (H—h+2z) A, — HA, } d{

= —2mi X residue at «,, (9-49)

= {SWIK ')’1 ﬂ1(2l<2 -—_Klzgl)/K’me'}"l} (Y/S exp {la)(t x/yl) HK'}'] ,31 (H }Z+Z) KY[ ay.

— 4,(¥]), e, (9:50)
where , _(OF

= (%),
r=t—xly, (0-51)

b= (H—h+2) i —Hin s

. A~ ~
A, = 2m 2/?’%‘“1//5’2)/7’1/?12[2(2/7’%_1//?12)/7/1\“1 b — (2/71_1/71“1 “1/71ﬂ1 )[7i1-
(i) #(w)<0. Apart from the change of sign due to the odd power of C, (Y/S),, changes
sign (#(w) Z 0) due to the change in 4,,, 4,,, 44,, 44, 1.€.

(Y/S)'yl:j:(y/s)'yl,l (%(w)ZO),
(Y/S),,0=0. (9-52)
We therefore find that @ = 4-4,(Y/S),, ,e“ ¢ (%(v)Z0). (9-53)

These expressions are exact. Their form is such that, to derive the response to the unit
pulse, we must avoid the sector w = —4m ¢ (¢ small) in the usual way by choosing as
contour the curve Q' through the origin and considering ,u{ and ,w{). We then find that

4,(Y)S)y1 7

U@ —

N my, p2+72’ (9 54)
W<4>:_A7(Y/S)71,1 V4
PN ﬂyj}l p2_|_7-2

The variation of U, W with 7 is shown in figure 13, the stationary values of U occurring
at 7 = p and the maximum displacements, horizontal and vertical, being proportional to
1/p,i.e. (H—h+z) /y/l\ocl —{—H/y/l\/ﬁ’l)‘l. The disturbance is of the nature of a pulse travelling
over the surface without loss of amplitude and with velocity y,. This particular ‘Rayleigh
component’ is greatest at the surface and for a source situated near the interface. It is, of
course, defined within the surface layer only.
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 243

Similar determinations were made of each of the zero-order and first-order contributions,
and expressions for the associated disturbances are given in appendix 2. Where two or more
expressions are bracketed together it is implied that the total component disturbance is
given by the combined effect of these. There is a resemblance between groups of terms
(see (5-15) to (5-18)) which reduces the total of distinct integrations, and a certain reci-
procity between ,¢ and ;f and between ¢ and ,y.

4)

Ficure 13. ,UW and ,W® from ,¢® on T,

10. GENERAL DISCUSSION OF THE PULSE REPRESENTATION

From the illustration of @ alone we may predict the nature of any component to the
following extent. A general term of the series into which the original ¢, ¥ integrands were
expanded contains an exponential of the form

exp {iwt —ilx —hy A, —hyAg }. (10-1)

For large x, the main contributions to theintegrals come from the immediate neighbourhood
of the branch-points and the pole. If, on substitution at any one of these, both A,, and Ag,
are to a first approximation pure imaginary multiples of w, then both the #; and 4, terms
appear in the time factor; this time factor then describes a complete travel-path from
source to observer and, moreover, a minimum-time path, and the associated disturbance
will be sharp like the generating pulse. Further, if we integrate near { = w/c, say, and
xislarge, the time factor is dominated by the part —x/c, and we deduce that the disturbance
travelled most of the way with velocity c.

On the other hand, if either (or both) of 4,,, 4, becomes a real multiple of w then the
corresponding term does not appear in the time factor but in the amplitude factor as a
damping effect. We can no longer associate a travel path with the disturbance, which is
now a blunt pulse and must represent part of the diffraction which the ray theory ignores.
Thus, from the loops I',,, I',, we may expect entirely minimum-time path pulses. From
the loops I'y,, I's, we shall derive minimum-time path pulses only when %, = 0; otherwise
the pulses will be of the second type, blunt and with no associated travel path. All this is
borne out by the actual determination of the contributions. We may summarize the results
as follows: ’ . ' ,

(1) The zero-order terms represent the generating pulse and such consequent motion
as is-due to the presence of the free surface. They provide such motion as would occur if
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244 MARGERY NEWLANDS ON A LINE SOURCE

the surface layer was of very great depth and the second medium absent, that is, the solution
obtained by Lapwood for the line source in a uniform semi-infinite medium.

(2) The first and higher-order terms represent the modification due to the finite depth
of the layer and the presence of the underlying medium. Each gives five distinct contri-
butions which may be classified according to the part of the contour from which they are
derived.

(a) Theloop I,,. This provides all the minimum-time path pulses which appear to have
travelled in the lower medium, along the interface, with compressional wave-velocity a,
after refraction at the critical angle. In the surface layer the motion may be distortional or
compressional (see figure 14).

These are sharp pulses, the displacements rising steeply but smoothly from zero at the
predicted arrival time. It is the rate of change of displacement which shows a ‘jerk’ at the
onset like the generating disturbance. The pulses vary in intensity as x~%.

(b) The loop T',,. This provides minimum-time path pulses corresponding to travel
entirely within the layer. The greatest part of the path is travelled with velocity «,; the
motion is therefore purely compressional or else involves a change of type. When £, is zero,
propagation is mainly over the surface as a compressional wave but beginning and ending
as a distortional wave within the layer. This is not, however, a ‘surface wave’ in the ordinary
sense. The surface travel here corresponds to reflexion at ‘grazing angle’, and its existence
may be deduced from the ray theory.

Each of these pulses is compounded of two parts, a disturbance which culminates at
7 = 0 (the ray-path arrival time) and a disturbance entirely subsequent to that time—a
sort of mirror image of the first about 7 = 0. ,¢- and g-terms give rise to horizontal dis-
placements like the initial pulse, that is, sudden jerks, and if the ‘fore’ and ‘after’ parts
have opposite sign the result should be a double jerk. The vertical displacements are
essentially continuous and may be expected to appear as smooth steep swings but modified
by a slight jerk which decreases in relative importance as x increases. The ,i terms give
rise to both horizontal and vertical displacements of the same type as the generating pulse.
The . terms give continuous displacements; it is in the ‘rate of change’ of these that a
jerk is felt.

When propagation is partly distortional and partly compressional the displacements
U, W die out with distance as x~!. When wholly compressional, the vertical varies as x~*
but the horizontal as x~*. At the surface, however, the various components of U are seen to
annihilate one another and next approximations would show a decrease as x~.

~(¢) Theloop Ty, The nature of the Iy, contributions depends on the form of the original
exponent. If it contains no A, term, i.e. #; = 0, then we derive refracted minimum-time
path pulses as from I', , but now travel along the interface in the lower medium is with
distortional velocity f, and through the layer it is with distortional velocity £, (an essential
consequence of Snell’s law with our choice of a,>a;>f,>f,). These, together with the
I',, contributions, provide the complete set of minimum-time path disturbances involving
critical refraction at the interface.

The remainder of contributions cannot be associated with ‘paths’; their time factors are
‘incomplete’ in that they do not correspond to travel from the source to the observer. They
are diffraction phenomena, blunt pulses which we are able to describe in terms of Uand IW.
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Each is a combination of two forms shown in figure 11 and is centred about ¢ = x/f, or some
later time depending on the relation of 4, 4, to H, h and z. When &, = z, a contribution
which is everywhere else of this type becomes at the surface part of a minimum-time path
disturbance.

(d) The loop T'y,. Again, if #; = 0 the contributions are minimum-time path pulses,
propagation is purely distortional, is confined to the layer and involves successive reflexions
at the surface and interface. The displacements show the same time and distance variations
as the purely compressional disturbances from I', , except that the descriptions of U and
W are now interchanged.

Otherwise, contributions represent further diffraction effects due to the curvature of
the wave fronts. They are rather simpler in form than the corresponding contributions from
I4,; either U varies as in figure 11¢ and W as in figure 115 or vice versa.

%y

77777 T,

a)

Freure 14. Typical T', -ray path. Ficure 15. Typical T, -ray path.

f%‘ o S ’ A
/ST S

Frcure 16, Typical I'y -ray path, &, =0. Ficure 17. Typical I'y-ray path, £, =0.

L A 8, ANG

(¢) All contributions from I, are diffraction phenomena. Only the iw(¢—x/y;) part of
any exponent appears in the time factor ; the #;, 4, terms modulate the amplitude. The result
“then is a superposition of pulses which appear to have travelled over the surface with the
velocity of Rayleigh waves in medium I and proceed with undiminished amplitude.

For an initial P-pulse the horizontal displacements are asymmetrical and the vertical
displacements symmetrical about time ¢ = x/y,. The spread of a component is proportional

to (A, /)//l\ocl —I—hz/y/;b’l) . The greatest displacement is inversely proportional to the same factor
so does not necessarily decrease with depth in the layer. '

Not all terms give contributions but only those for which { = w/y, is a simple pole, that
is, in which the expression F occurs as 1/F only. These seem to be characterized (for first-
and higher-order terms) by a difference of sign attached to £ and z where they occur in
hy and h, in the exponent, that is, by a sort of asymmetry between the position of the source
and of the observer.

(f) Asz—>0, thatis, the point of reception approaches the surface, certain of the so-called
‘blunt pulses’ (those for which %, = z) increase in sharpness until for z = 0 they become part
of a minimum-time path disturbance.

VoL. 245. A. 30
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246 MARGERY NEWLANDS ON A LINE SOURCE

The possibility 2 = 0 is fully discussed later in connexion with the dispersive surface-
wave motion, and the conclusion reached that the formulation of the problem is only valid
for a source which is actually submerged.

(2) We have obtained a contribution corresponding to energy transfer from source to
observer by each one of the minimum-time paths given by the ray theory. Further, those
paths involving refraction at the critical angle (which on the simple ray theory are asso-
ciated with zero energy) are found in fact to correspond to finite disturbances. It is evident
from the way in which these results are arrived at mathematically that the corresponding
results hold

(i) for any values of the velocities,
(ii) if the source and/or the point of reception is in the lower medium,

(iii) if the system is multilayered and the source and reception point located in any
stratum.

We may therefore deduce the exponents which must occur in the ¢ and ¢ series in any
of these generalizations and hence the mathematical origin and, to some extent, the nature
of the diffraction effects.

G G G G

L-/( L/)ﬁl/
Y, A
(a) P (6) P, (d) S
Ficure 18. The P, P, § and §, pulses of seismology.

We must now inquire into the relative importance of high-order contributions—first of
the ray-path pulses. Although it is not immediately obvious because of the complicated
nature of some of the coefficients, there is an amplitude reduction accompanying each
successive reflexion or refraction just as the ray theory predicts. This may be readily verified
whenever the path of travel involves a change of type, but when propagation is with con-
stant velocity our assumption of x large means that angles of incidence and reflexion are
all equal and almost 90°. Then our approximations conceal what is a very small but definite
amplitude decrease accompanying each successive reflexion, but it is not difficult to locate
the stage at which we suppress the relevant factor. In this connexion it should be remem-
bered that a horizontal distance x which is sufficiently large for the determination of the
once and twice reflected pulses by our approximate methods may not be ‘large’ with refer-
ence to a pulse ten times reflected. On the other hand, the amplitude of the latter is going
to be small, and we interpret the failure of the approximation as indicating a ‘blurring’.
We may therefore expect a surface record, up to ¢ = x/§,, to show the following type of
pattern when x is large:

The first arrival should be felt at ¢ = x/o, 4 (2H —h) /oc/lzcz—the ‘P’- pulse of seismology—
a sharp pulse which has travelled as in figure 184, followed by a whole series of disturbances
of the same type but diminishing amplitude and increasingly blurred.
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At ¢ = x/a, +h?[2xa, the first of the I', -pulses—the P, of seismology—should be received.
This is followed by a train of pulses which have undergone reflexion at the interface and
surface; diminution in amplitude is at first less rapid for this group (for reasons given above)
but becomes increasingly important and finally gives way to blurring. Sign differences
between successive pulses should give an oscillatory character to the record.

Although we cannot picture the process in the case of the non-ray-path pulses from I';, and
Ty, there appears with these to be the same steady decrease of amplitude with increasing
order. In addition to the decrease which displays itself in the coefficient of each exponential,
wesaw from thestudy of ,¢ and ,¢‘?) that there is a flattening and spreading of the blunt pulse
as fiyincreases and a further time lag as £, increases. The Rayleigh pulses show this ‘blunting’
for increase of &, or f,, but all are symmetrical or asymmetrical about time ¢ = x/y,.

The diffraction phenomena are clearly going to modify considerably the passage of the
other two trains of minimum-time path pulses. First would come those refracted along the
interface with velocity f,, the earliest arrival being the ‘S’ of seismology at time

AN
t = x|fy+ (2H—h) B, f,
(figure 18¢); next, those propagated entirely within the layer with velocity f,, the first of
these being S, felt at time ¢ = x/f, +k,/2xf, (figure 184).
Now if we specify the arrival of a diffraction pulse by the instant 7 = 0 about which it is
roughly centred (see discussion of ,¢%)), there will be such arrivals at

t = x/By; b= @H—1)[fya,, (2H+B)[fym,
t = /By hif s b =2Hfa,
t=slfy+(H=)fBo; = Hify,

t=xlpytHf By p=(H+W)fya, (H—H)|fro,

AN AN
t=x[By+ (H+R)[B1fo; b= H|fey.
and the next arrival will be ‘§” at
t = x|fy+(2H—h) B\ f
(two values of p imply superposed pulses and p is defined as in the treatment of ,¢®).
If we suppose that by time ¢ = x/#; any of the I'; -group of diffraction and ray-path pulses

is severely blunted (and interference effects not yet important), then the instant ¢ = x/4,
should be marked by the arrival of the I'; -pulses, a superposition of diffraction pulses

¢ tred’ at ~
o = lf; p=hihm R
p= (2H=h)[p 0y, (2H+h)[f e,
t = x[fy+122xBy; p=2H[f ey,

followed by the §, of seismology at
t = xlfy+ 2 J2xp,.

If we ignore a time difference like /42/2xf6, in comparison with the spread of a diffraction
pulse, then we have to superpose further diffraction pulses at

t=xlf, with p— (H—h)/fia, Hlfra, (H+R)f, 2H|fa,.

30-2


http://rsta.royalsocietypublishing.org/

A A

j A Y

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

' \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

248 MARGERY NEWLANDS ON A LINE SOURCE

We may now be in a position to throw some light on the apparent § and .S, anomalies:
(a) ‘up to about 20° the S-residuals are spread over about 20sec without any convincing
concentration of frequency’ (Jeffreys 1946, p. 61), (b) seismograms of near earthquakes
sometimes show S, as having arrived 1 to 2sec before the time at which'it would be expected
after P, (Jeffreys 1929, p. 98).

A difficulty now arises in the fact that having chosen to represent the generating dis-
turbance by an instantaneous shock, we have derived infinite displacements at the time of
arrival of certain of the minimum-time path pulses. We may overcome this failure to comply
with physical conditions by slightly modifying the initial pulse to one of the form

ltan‘l L —l-fwe‘“’ sinwt@
s mJo W
. _1_ ® ?sw-&»iwt@ > :
_27rif_me w (©)Z0), (102)
which for s small tends to +3 (t>0),) (10-3)
-1 (< 0),J

but varies continuously through the origin. About 70 %, of the total change takes place
between the values -+ 2s of ¢ (Lapwood 1949, p. 99). By choosing s sufficiently small we
may therefore represent any very sudden but continuous displacement at the source.

Without further calculation it may be seen that all contributions will be of the form of
so-called ‘blunt pulses’; those which were originally ray-path pulses will be evaluated like
A% and , ), where the role of ‘p’ is fulfilled by ‘s’, and those which were already of this
second type will differ only in that p is replaced by (p-+s). Now we saw that (1/p) was a
measure of the greatest displacement and p a measure of the spread of such pulses. As s—0
the ray-path pulses become sharper, always finite but resembling more and more the form
appropriate to the instantaneous shock (cf. the discussion of the diffraction effects when
h, = zand z— 0, p. 245). So long as the duration of the initial pulse is small compared with
the ‘p’ of a resulting diffraction pulse then we may neglect the spread of any minimum-time
path pulse compared with that of the diffraction pulse.

It seems reasonable then to suppose that at least some explanation of the S-anomaly is
to be found in the arrival of exactly seven diffraction pulses before the true S-wave. If, as
we suppose, the tail of the I, -pulses is blurred and insignificant at time ¢ = x/f,, then the
arrival of the first diffraction pulse might well be interpreted as the arrival of . That there
is no concentration of frequency of the residuals might simply be due to the ‘personal
fancy’ of the individual observer; not convinced by the record of the first diffraction pulse
he might interpret the second, third, ... (or the true ) as the onset. In support of this is
the fact that, if % is just a fraction of H, the fourth, fifth, sixth and seventh pulses should
certainly be sharper than the first to third, and the true § sharper than any. We have not
needed to give any very exact estimate of when a diffraction pulse makes itself felt, i.e. what
fraction of the maximum U, W/ must be attained before it may be said to have ‘arrived’.
It is sufficient here to specify the arrival time by 7 = 0, for we are obviously dealing with
a quite considerable time difference between the first pulse and the true S. That interval

is of the order of ~
. (2H—Fh)[B,f, sec.
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If we take for £, the value 3-4 km/sec, then /5’:/\5’2 is 4-6 km/sec, and if the source is shallow
we need a layer of only 35 km to give a residual of over 15 sec (this is just about the depth of
combined sedimentary, granitic, and intermediate rock believed to overlie the ultra-basic
in most continental areas).

Now consider the I'y -arrivals. We may note that the first listed diffraction pulse and the
true S, are ‘zero-order’ contributions and were therefore at the disposal of Lapwood for
the elucidation of the S,-anomaly; the diffraction pulse is his ‘surface S-pulse’. If, as we
suppose, the instants ¢ = x/f; and ¢ = x/f,+h?/2xf, are inappreciably different, then a
better estimate of the time of ‘arrival’ of the diffraction pulse is now essential. Lapwood
(1949, p. 99) first reverted to the continuous pulse with time variation as

1 -1 ¢ 1 ® Fso+iwt dw > ‘

= . sw+ior Z . 104

Stan™lo = _c w (%#(w) 2 0) (10-4)
Combining the two contributions this gave

A VK { 86, sin(3y—im) hsin(3y—im) 4 A’sin (%¢+%ﬂ)_4sin(%¢f’+i~ﬂ)}
B VN G D A O S B 0 N (G LEx G Dk
(10-5)
1 — 24/(28,) 7p, { 86y sin (§y+4m) & sin(3y +im) -
X1 ﬁl/a\‘x /91/;1 (32+72)} /?1 (s2+72)*
' 4 A%sin (3¢ —1n)
+ A~ x (52+72)i

4sin (3y" —4m)
(G Epr g 1oo)

.+_

. 1%
where ' T =t—x/f,—h*[2xp,, ¥ = tan~!(7/s), (10-7)
AN
T =1=xlf, p="hlfra, and ¢’ =tan”!(7'[(s+p)), (10-8)
the first three terms due to §, and the last to the surface S-pulse. The functions
- costy sin (3y L)

attain 20 9, of their maximum at approximately 7/s = —2 and +38 and at 7/s = +2 and
— 38 respectively. Lapwood therefore used the diffraction term of W to explain the apparent

early arrival of the vertical component of §, at 7/s = —38 (lz/ﬂ:;al now supposed <s), and
the first term of U to explain the early arrival of the horizontal component at the same time.

This seems at once unnecessary and its validity doubtful. First, approximations known
only to hold in the neighbourhood of 7 = 0 are used to support arguments at 7/s = — 38;
indeed, it is shown by another method (Lapwood 1949, p. 89) that for the surface S-pulse
figures 19 a, b, representing U, W, should be replaced by figures 204, 5. These show the
20 %, value as being attained at times given more nearly by 4 2; in a final note reference
is made to this correction (Lapwood 1949, p. 99).

Next, Lapwood supposes that p for the surface S-pulse is small compared with s and
accounts for the anomaly in the horizontal by the spread of S, itself due to the finite duration
of the initial shock. As the anomaly is a ‘relative’ one (the early arrival of S, after P,), and
it can be shown that P, will show a comparable spread to the fore (and in both U and W),
this argument would seem to lose its weight. Rather, we would seek an explanation which
is quite independent of the finite duration of the initial shock.
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250 MARGERY NEWLANDS ON A LINE SOURCE

Now the spread of §, is measured by s and the spread of the surface S-pulse by /z/ﬁ’:;l +s5
(the respective p values). If 20 9, of U .., Wi.ax. 1s supposed still to signify an arrival then

$ arrives of the order of 2/;/,6’:;1 sec in advance of S, and might be interpreted as S, so
long as S, is at this stage still inappreciable (submergence to a depth of 5km would give
an error of about 2sec). Otherwise we must turn to the diffraction phenomena attributable
to stratification.

/m, - /kz\\

W
\/ U 174
(@) (b)

(a) (b)

S~

>

F1Gure 19. Approximation to variation of (a) U, Ficure 20. Better approximation to the
(b) W in ‘surface S-pulse’ (related to figures variation of (a) U, (b) W in the ‘surface
11a and 5). S-pulse’.

It appears true of any component that improving the approximations to U b1 Wﬂl (see
appendix 1) gives a steep descent from U,,,,, W, in the directions of 7 both increasing
and decreasing; consequently, 7/(p+s) = —2 may be taken as roughly the stage at which
any diffraction pulse attains 20 %, of its maximum rates of displacement. With the single
surface layer we found superposed about the instant ¢ = x/#, blunt pulses with p-values
(H—1) b, Hifra, (HAB)|f0, (2H—B)|fy0, (2H+H)|fia. Neglecting h compared
with H and using the 20 %, rule, the first of these could account for a time error of the order
of 2H/ﬂ:;l. This can only be regarded as suggesting an order of magnitude (15 sec for a layer
of 30km); it may be that some value nearer 100 %, of Uppiaes Winay, is attained before an
‘arrival’ is recorded, if this simple model is even applicable. Moreover, the zero- and first-
order terms provide only a very incomplete sample of the diffraction effects; an investiga-
tion of higher-order contributions would clearly produce further pulses for which 7 = x/f,
and with p = (8H—h) /ﬂ:;cl, ..., their ‘spread’ increasing and magnitude decreasing with
increasing p. The apparent early arrival of §, may well be attributable to confusion, not
with any single diffraction pulse, but with some more important interference effect. In
part IT we shall study in detail the interference pattern at great range.

11. STEEPEST DESCENT METHOD : LEAST DISTANCE CRITERIA FOR INDIVIDUAL PULSES

So far, we have not used the methods of steepest descent or stationary phase for the
approximate evaluation of integrals.
Indeed, the original {-integrals, of the type

4= fw [S+ Texp{—2H,}+ (V+7Y)exp{—H(A,+Az)}+...]
0

, . exp{—#hAd, }cos{xd
[S"+ T exp{—2HAz}+...] pi peosGxdg
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 251
are not of a suitable form because of the occurrence of the exponentials within the first
factor. When, however, we have applied the Bromwich expansion principle each resulting
term of the series for 4, ¥, @, ¥ is of the type

6 =2 [ RO exp liot—hd, —hady} e prde (O[S i 0,

_ f : 2(0) exp ot —ix—h A, —hyds } Al where () = {X—(%@

— jio () e’ de, (11°1)

where y({) varies slowly relative to the exponential factor so long as | w | is not too small,
and the methods of stationary phase or steepest descents may be applied.

Nakano (1925) used both methods in the simpler problem of a line source in a uniform
medium, and although his treatment did not admit the simple physical interpretation
derived by Lapwood using the Sommerfeld contour, more information was obtained
about the disturbance at short range. Primarily, we are interested in great range, but it
is of interest to know at what distances we may expect individual pulses to be first felt.
Nakano’s methods produced certain least-distance criteria for the Rayleigh pulse, ‘surface
S-pulse’, and ‘surface P-pulse’. Lapwood (1949) observed that these were the same
conditions as determined the stages at which the steepest-descent curve, when confined to
the top leaf of the Riemann surface, has to be distorted to avoid a pole or branch line, i.e. the
stages at which it acquires, one by one, the essential features of the Sommerfeld contour.
The curve of stationary phase, even with slight modifications, cannot be confined to the
top leaf, and although the same conclusions were reached, the discussion was more difficult.

Anticipating a similar situation we shall approximate to the integral (11-1) by steepest
descents’. If the original contour, the real akis, can be distorted into the line of steepest
descent by arcs which give negligible contribution, then the main contribution to the
integral comes from the region of the saddle-point on the steepest-descent curve and. is

approximately (@l () x(Go) exp {f(G) +id, (11-2)

where {, is the saddle-point and « the inclination of the curve there to the real axis; the curve
is defined by [ f({)] = constant, described so that Z[ f({)] decreases along it.
For the purpose of this discussion we shall consider % () > 0, that is,

0=s5—ic (s>0,c>0),
and suppose that the integrand

o= a0y erod

where J(€) = iwt—ilx—h (2 —«2 ) —hy({2—43,)%,

has branch lines Z(1,,) = 0, Z(4,,) = 0, %Z(A4,) = 0, #(14,) = 0 and a pole «,,. Put
' g = Kq, ﬁ)

then, with the velocity ratios used throughout, namely,

KogiKay KpyiKg = %:1:3./31/8,


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

252 MARGERY NEWLANDS ON A LINE SOURCE
the branch points are, respectively,
by=3% 0,,=1, O5,=2%3, 05 =13, (11-3)

and the pole «,,, is 0,, = J3/0-9194 .... (11-4)
The saddle-point is the point 6, where

df _ i G ikl _o

df— JA=0) J(at/pi—07) 7
giving x = h0,/(1—03)+h,0,/(3—03)%. (11-5)

This has only one real root, which increases with x and lies between § = 0 and § = 1. The
saddle-point is therefore on the line of branch points.
The line of steepest descent is determined by the relation

File+ih (€2, — () +iky(k5, — {?)t] = constant (value at saddle-point)
= (s/ay) [%0o+hy (1 —08) 1 +hy(3—05)*].  (11-6)
If we write {=¢E+iy,
then points on the curve for which | {| is large are given by
Ext (h+h)n =0 (%(0)20), (11-7)

portions of two straight lines in the fourth and third quadrants respectively.
Close to the saddle-point we may write

{=rko+E+ip" (ko= Kaqao)’ (11-8)

and obtain an approximation to the curve for £’, #” small by considering one or more terms
of the Taylor expansion of f({). Since «, is a stationary point and by definition is on the
curve of steepest descent, that curve is given by

[ +ig")2f" (ko) /2! + (&' +i7)3 " (kp) /8! ...] = a real and negative quantity.
As a first approximation we have, since f”(«,) is positive imaginary,
(¢’ +1i7")%i/(s—ic) = a real and negative quantity
or {s§'2~2c ‘' —sp'? =0, (11-9)
ct'?+4-2st'n" —en’?>0. (11-10)
Equation (11-9) breaks up into two straight lines
[ —E{—c-+ (2 +6)Ys] [ +Ee-+(>+e)}is] = o, (11-11)
of which, by (11-10), the first only is relevant and represents the tangent to the line of

steepest descent on the top leaf of the Riemann surface.
The next approximation is

(&' +ip")2f" (ko) 2!+ (&' +1n")3 f" (k,) /3! = (real and negative)
or

8[s(E2—7"%) —2cE'n' 1 &f" (ko) [f" (ko) — [ — (882" —1'%) 2s¢ -+ (£§3—8E'n'?) (s2—c?)] &, /(s +¢?)
. = (real and negative),
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 253

and putting = 3]}”’((/<0))wz’

the condition that the imaginary part of f({) vanishes may be written
[7+&(s/a, —&) {J/(*+ %) +e}/s*] [1+E(s/ay =) fe— V(> +A)}s*] = 0, (1112)

where we have partially substituted for 7 from the first approximation and have added
fourth-order terms, supposing them small. We deduce that in the neighbourhood of the
saddle-point the curve is part of a parabola which cuts the -axis again at s/a; and whose

equation is 7= E(s/ay —E) {/(s2+¢2) —c}/s?, (11-13)

but we find that for no value of x is this ever more than a local approximation. We may
suppose, however, that the curve is of roughly parabolic shape with modifications in the
neighbourhood of the apex.

o Lo
A4 >
Kafiayip b, N\ Kn Kof~foay

Ficure 21. Modified steepest-descent ~ Ficure 22. Modified steepest-descent
curve (w real). curve (@ complex).

For real w and { = «,,(u+1v), the curve is given exactly by

Jlix(u+iv) +ih {1 — (u+1iv) 2} 4-iky{8 — (u +iv)2}] = constant,

that is,
st by S =02 0) + B{(L 24 07)2 4 7]}
+hy J{F(3—u?+0%) + [ (8 —u?+v%) 2+ 4u%?]!} = constant  (11-14)

where the positive roots are taken. Since

R(Ay,) = (sfor) w0/ (1 —u?+0%) +3[(1 —u? +0%) +du??]F}, (11-15)
and B(hg) = (sfo) un) J{H(3—12+07) +H(3—u24v7)2+ 4207}, (11-16)
only those portions of the curve for which uv >0 lie on the top leaf of the Riemann surface
and the curve must be distorted to avoid regions uv <0, equivalent we see (figure 21) to
avoiding crossing one or more of the superposed branch lines.

We shall see that for our purpose it is not necessary to know the detailed form of the
steepest-descent curve; it suffices to know the number and location of the points in which it
intersects the line of branch points. Assuming a curve of parabolic type we shall examine in
detail the variation of 4| f({)] along this line, deduce the essential modifications to this

supposed form of curve and draw what conclusions we may from its relation to the Sommer-
feld contour. If at a certain distance x the curve should take the form of figure 22 (where

Vou. 245. A. 31
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254 MARGERY NEWLANDS ON A LINE SOURCE

the narrow loop is a necessary detour to avoid crossing the branch line #(4,,) = 0 and the
small circle surrounds the pole), we should conclude that, at this range, both the I, and
the I';, pulses are significant relative to the saddle-point contribution.

Writing { = «,, 0 we examine the variation of #[ —f({)] for real §:

(1) 0<0<1, 0 =s—ic (§s>0,c>0).

h
We have IL—SO] = (s/a) [0+ -y J(1—07) + Dy J (BIFF—09)]. (11-17)
There is a maximum at ¢, the saddle-point, given by
5=y o)/ (1= 03) Iy o)/ (3—03) = 0. (11-18)

The left-hand side of (11-18) is the derivative (%[Jf (—f)], and hence the branch-point

Ky, (04, = 21/ay = 2) lies to the left or to the right of the saddle-point according as
52 IO, (1= 02) +hy0, 1 (RIFI—O), (11-19)
that is, distortion will be necessary and the I',, pulse will become significant as soon as
%> I/ (e3jed—1) +hyf (43/F—1)
= 3hy/ T+ 3h,//39. (11-20)
(2) 1<0<a,/f, (=./3). The steepest-descent curve recuts the axis between 1 and ,/3
if #(—f) equals or exceeds the saddle-point value there.
We have that
I(=f) = (sfon) [0+ ko (3—07)] = (/o) u/ (02— 1), (11-21)

so that if it attains the saddle-point value for any w it will do so for ¢ = 0. In particular, then,
we study the variation of

(sfe) [x0+1y J(3—05)]  (1<0<3). (11-22)
The expression has a single maximum at
0 = ./3x/(x2+h3)%, (11-23)

which lies within the range if
J3x/(x2+ k) >1, thatis, x>hy/ /2. (11-24)

Consider in turn the cases
(@) x<<hy//2. The expression (11-22) decreases from the value

(sfay) (x+./2hy) at O=1
to _ (s)ay) /3% at 0=,/8,

and we conclude that there is no intersection in the range ¢ = 1 to /3. Thus for x<4,/./2
the Iy, I'y, pulses are not significant.
Extending the argument to #>,/3 we see that a second intersection must occur when

x0 = 20,4 h (1 —03) + hy (3 —03)*. (11-25)
Therefore the Rayleigh pulse (from I, ) will be felt when
xay[yy (= /8%x/0-9194 ...) >x0,+h (1 —05)} +hy(3—0F) . (11-26)
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 255

Although 6, is a function of x, it is easily shown that this relation is equivalent to a simple
one of the type x> x,,.

(b) x>hy//2. There are three possibilities.

Case I. The value at the maximum is less than the saddle-point value, that is,

3 (2 1) <0+ hy (1 — 03+ hy(3— ), (11:27)

and there is no intersection in 1 <#<,/3. The situation is essentially as in (a).

4

S (f)

I(-f)

__________________

S(F)

o Y. S N | A R R N | IO IE

~
-

\
/ \\
(a) (b) case I (b) case II (b) case II1
FicurE 23. The variation of # (— f) with 0 (—) and the steepest-descent

curve (---). (@) ¥ <hy/y2, (b) x> hy[y2.

Case II. The saddle-point value is less than the value at the maximum but greater than
the value at /3, that is,

J3 ($2+h3) > 20, +hy (1—03)E +hy (3—05)1 > /3, (11-28)

so that the steepest-descent curve makes three other intersections with the line of branch
points. The Iy -pulse does not appear; the Iy -pulse is significant if

%0y By +hy (8 —a}f3) >0+ hy (1 —03) 4 hy (3—03)?, (11-29)

into which relation may be substituted «,/f, = $./3. The I, -pulse is felt according to
(11-26).

Case II1. The saddle-point value is less than the value at the maximum and less than the
value at /3. Since for ¢ = 0, ¢ real and >,/3 we have

I(=S) = (su) 0,
it follows that .#( —f) continually increases from ¢ = /3, and we see that there can be only

one intersection in (1,./3) and none for 6> /3. Thus the I, - and I'; -pulses are necessarily
significant and the I',-pulses also if

%y [yt hy (38—t [B3)! > 50 +hy (1 —0F)} +hy (3 —08)*. (11-30)
It is now apparent that the order of appearance of the I',-, T'y,-, I'5,-, I, -pulses is not
fixed but depends on the values of &, f,, oy, @;, f, f;. We must first check that the three

cases treated geometrically above do, in fact, arise in the order I to III as x is continuously
increased.
At any given 6 the function #(—f) increases linearly with x at a rate proportional to 6,
so that although the saddle-point varies, the value of .#(—f) there is certainly increasing
31-2
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256 MARGERY NEWLANDS ON A LINE SOURCE

at a lesser rate (with respect to x) than at a point for which #>1; and for 6> 1, the greater
0 then the greater the rate. It is now readily seen that cases I to III must arise in that order;
likewise that any one of the above conditions for the appearance of a particular pulse must
be equivalent to a simple minimum distance criterion, x> x,.

We are now in a position to state that the I';- or the I'y -pulse is felt first according as
the value of J(—f) at «g, is greater than or less than its value at the saddle-point when the
value at «,, first attains the value at the saddle-point (see figure 23), that is, according as

sty By -y (I3 — 3B 2 -+ hy (1—03) -+ by (15— O3)", (11:31)
where 5 = by 0y (1—03)" -+ hy ) (a3 — 03)’ (11:32)
and 3y, = #y by (1—03)* -+ (a2 /63— 63)" (11-33)

These relations are reducible to a condition in %;, /, and the wave-velocities of the media.
Summarizing our results we have that
(a) the I', -pulse appears when

x> hy oy oy (1—affaf)t + koo o, (af [BF —af[a3)?,
(6) the I'y-pulse when
xo B+ by (a3 /57— 03 3)! > 200+ hy (1 —05)! 4 hy (357 —05)",

which certainly implies x> £,/,/2,

(c) the I'y -pulse when ’
xay [By > %0y +hy (1—=08) by (0} /B —05)%,
which again implies x> £,/,/2,

(d) the I, -pulse when

xay [11> %0y +hy (1—=08)} -+ by (a5 —05),

(e) if substituting 0y = ,/a, (= 6,,) none of the relations (4), (¢), (d) is satisfied, we

conclude that the I', -pulse (corresponding to partial travel along the interface with

velocity a,) is felt first,
(f) the I'p -pulse precedes the Iy -pulse if

xon [By+ by ([P} — 03 3) <+ by (1 —=08)* -+ by (5} —05),
when x|y = %0y +hy (1 —05) +hy (o3B3 —0F)*
and 0, is defined as throughout. Geometrically, we see that if this is so, the I, -, I'g -, Iy -

pulses appear in that order; but if the I'y, precedes the Iy, the order is not fixed.
It remains now to examine the saddle-point contribution as given by (11-2). It contains

the factor exp {io{t—x0y/a; —hy (1 —03) o, —hy (a}/f7—03) )}, (11-34)

where 0, is given by % = By By (1—02)F -+ by 0] (03]2— O2) . (11-35)

Substituting ¢ = cost, it is readily shown that (11-35) expresses the condition and (11-34)
contains the appropriate time-factor for travel by a minimum-time path, partly as a com-
pressional and partly as a distortional wave in the layer. The lengths %, and %, are neces-
sarily such that a complete path between source and observer is derived and ¢ is the angle
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 257

of incidence (as a compressional wave) at the surface or interface. We obtain, in fact, the
equivalent of the ‘I', ’-contribution, and may conclude, therefore, that these so-called
‘I, ’-disturbances should be felt however close to the source.

L7, @

V11

Ficure 24. Saddle-point contribution (k,=H+h—z, hy=H).

When £, = 0 the above arguments remain valid, for the steepest-descent curve still
contracts about # = 1 and the fact that #( —f) (v real) now increases linearly from § = 1
(not 0 = /3, as before) simply cuts out the second possibility of two intersections in
1 << /3; the I'g -pulses must therefore always precede the I'y,. This case was treated in
part by Lapwood in the problem of the uniform medium, but there were naturally no
Aq,- and Ag,-branch lines to consider.

When %, = 0 the arguments must be slightly altered as the steepest-descent curve now
contracts about § = /3 (i.e. k4 ) ; the I',,-, I, -, I's -pulses become significant in that order
and the I, -pulse at an earlier, later, or intermediate stage depending on the velocity
ratios only. In this case the I'; -pulses arise from the saddle-point contribution and should
therefore be felt at all distances.

Our results have been obtained for a harmonic vibration of period 2w/w, where, to
ensure the relatively slow variation of the factor y({) in the original integral, | w | was assumed
not too small. On generalizing to an initial pulse we may expect the same characteristics
to be observed provided contributions from small | | are unimportant. The term ‘period’
is used rather loosely to include complex w. We have also referred to contributions as I'; -,
L4 ... ‘pulses’ throughout the main arguments, that is, before actually generalizing to
an initial pulse.

12. THE CONTRIBUTIONS FROM THE STONELEY POLES

We have reserved until now the discussion of the equation

_g A 1 _C A 2
/Ioc '_g “'lla ~——€
SO = 1 z —o0, )
O o, @k o e | O
(28—kg) =20y (2C—kg)mlm  20p,p0

and the possibility of contributions from the Stoneley poles. The equation (12-1) was shown
by Stoneley (1924) to determine the possible systems of free waves which may be propagated
over the interface between two distinct media of infinite depth. By distorting the w-contour
into an infinite semicircle, so making the ‘wave-length’ infinitesimally small, we have in
effect reproduced these conditions in our own problem.

Scholte (1942), considering real w, treated the algebra of (12-1) fairly exhaustlvely and
showed that the equation has 2, 1 or 0 real roots according to the values of the elastic
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258 MARGERY NEWLANDS ON A LINE SOURCE

constants and densities. He examined the equation in its original form; only real roots
in { correspond to true Stoneley waves, that is, unattenuated motion over the interface.

In order to investigate the possibility of complex roots the equation (12-1) was rationalized
yielding a sixteenth-order equation in Y, where

Y = (k)2 (12:2)

To simplify the arithmetic in the early stages, the assumed earth model was replaced by one
in which

Uyt faiffy = /6:/3:/2: 1. (12-3)

A programme was prepared for the solution of this sixteenth-order equation on an electronic
calculator.®* The method was an adaptation of Newton’s method and gave six real roots
and five pairs of conjugate complex roots. We are interested only in those solutions which lie
on the top leaf of the Riemann surface. As predicted by Scholte, for our choice of elastic
constants the equation (12-1) has no real roots; in addition, none of the complex roots
is relevant. It would seem then that in this particular case the Stoneley poles make no
contribution to the disturbance.

The chance of error in the rationalization and subsequent solution of (12-1) is, however,
-appreciable, and the possibility of handling such an equation in its original form is being
investigated. It may then be possible to study the existence of roots for a whole range of
elastic constants, a necessary step before the role of the Stoneley poles can be properly
understood.

13. THE DISTURBANCE AT GREAT RANGE

We have found in the Bromwich expansion method a convenient means of describing the
disturbance due to the line source in terms of a succession of pulses whose existence may be
deduced from a simple ray theory and which correspond to travel by minimum-time paths
within the surface layer and along the interface in the lower medium. As distinct from the
analogous Love-wave problem (Jeffreys 1931), there is additional motion not explicable in
terms of ray paths and corresponding generally to blunt movements.

Although the accuracy of our approximations has depended for the most part on a large
horizontal range ¥, it was remarked that each single pulse might best be distinguishable as
such at the minimum distance for its appearance. At moderate range interference between
pulses must begin and at very great range we may expect the pattern of pulses to be partly
or even wholly lost and the disturbance governed by these interference effects. Now from
considerations of energy transfer we should expect the surface waves, if they exist, to pre-
dominate at great distances.

Jeffreys (1931), in the investigation mentioned above, attempted to recombine certain
component pulses to demonstrate the interference and identify the resulting motion with
the anticipated Love-wave phase; the present problem is so much more complicated that
a similar procedure could not be contemplated.

Alternatively, we may look for a new transformation of the {- and w-contours which will
separate out that part of the disturbance which predominates at great distances. It will be

* T am indebted to Mr R. A. Brooker of the Mathematical Laboratory, Cambridge, who undertook the
‘programming’ of the problem and its solution on the E.D.S.A.C.
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 259

found that such a transformation is possible and that we do, in fact, obtain as the dominant
motion a certain superposition of the free waves which may be propagated over the surface
of the elastic system. We shall first investigate these free-surface waves without reference to
the generating pulse.

PART II. THE DISPERSIVE SURFACE WAVE-TRAIN GENERATED
BY THE LINE SOURCE

14. THE PROPAGATION OF FREE-SURFACE WAVES IN A SEMI-INFINITE ELASTIC
MEDIUM WITH A SINGLE SURFACE LAYER

Consider the elastic system consisting of a semi-infinite medium of density p,, elastic
constants A,, #, on which lies a finite depth H of material of density p, and elastic constants
/11, -

Defining right-handed axes as shown, it is desired to investigate the two-dimensional
vibrations of the system in the plane (Ox, Oz), propagated over the surface without change
of form and vanishing at great depths.

0 x
i y
Ij plrlu’lr}\‘l
VS S
/ / Pz, /’“2/ 2
Ficure 25

This problem has been considered by a number of authors who for various ratios of
density and elastic constants have shown that such a motion is possible and obtained the
relation between phase-velocity and period in the first mode of vibration. In particular,
Lee (1935) and Jeffreys (1935) obtained the wave-velocity-period curve for the model earth
considered in this paper, that of a granitic layer overlying a great depth of ultra-basic rock,

described roughly by tofity = Ayfd; = 20, }

. (14-1)
Palpr =% M=, =2,

Although it has long been recognized that the familiar velocity-period curve represents
only one solution of the wave-velocity equation, and that, as for Love waves, there might
exist an infinite number of modes of vibration, no systematic investigation of the higher
modes appears to have been made.*

The importance of a knowledge of all the modes of vibration will be evident when we
refer again later to the generating pulse, so that the work of Lee and Jeffreys will now be
extended.

* For a liquid/solid system the corresponding study has been made by Press, Ewing & Tolstoy (1950).
See also Longuet-Higgins (1950).


http://rsta.royalsocietypublishing.org/

A A

j A Y

_\r

NI
olm
~ =
oY)
o)
=w

PHILOSOPHICAL
TRANSACTIONS
OF

' \

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

260 MARGERY NEWLANDS ON A LINE SOURCE

As the elementary theory of elastic waves has been presented in part I, § 2, the potentials
¢ and ¢ and velocities « and £ defined and the boundary conditions postulated for just such
a medium, we shall introduce without further justification solutions ¢ and ¢ of the form

¢ =[dexp{—(z—H)A,}+Bexp{(z—H) A, }] cosk(x—ct),
¥ = [Csinh (z—H) A5, + D cosh (z— H) A4 ] sin k(x —ct),
lower [$=Rexp{—(z—H)A,}cosk(x—ci),

layer {gﬁ = Qexp{—(z—H) Ay }sink(x—ct),
where Ag = (k2—k%)t =k (1 —c*/pD)},
N = (R2—2)! = K (1=ctad),
Ay = (=13} =k (1=,

/1112 = (Kz_K?cz)§ =K (1 —62/“%)*’4

pe |
(c<py), (14:2)

(14-3)

and
arpe (#- [Aexp{— (z—H) A} + Bexp{(z—H) A, }] cos (s —et),
layer |y = [Csin (z—H) A5, +D cos (z— H) A, ] sin k(x—ct),

(Bo>c>pf1), (14+4)
lower [¢=Rexp{—(z—H)A,}cosk(x—ct),
layer {yf = Qexp{—(z—H) A} sink(x—ct),

where Ag, = (K3, —K2)F =k (2fE—1)% (14+5)
This solution for ,>¢>/f, may be derived from that for c<f, putting 1 5 = g,
From the factors ;:lons k(x—ct) it is seen that ¢ is the phase-velocity, 27/« the wave-length

and 27/w (0 = &c¢) the period of the disturbance. The condition of continuous propagation
without change of form requires that « be real, and the vanishing of # and w as z—>00 that

A,,» A, be real. Thus with the given ratios of elastic constants and density for which

>0y >fFy>p,

we are interested only in values of ¢ less than f,.
The boundary conditions of a free surface and continuous displacements and stresses

at the interface may be written (for ¢ <f))

_kA—xB—1,,C | = —kR—1,,Q, | | o
—2A,, A+A, B—kD =—,R—«Q,
Ay, A— 20, B+ (263 —3) D = 20, (o] p) R+ (262 —K3,) (Mafptr) Qs

(2x2—k3,) A+ (262 —«5)) B+ 25 C = (26> —K},) (tofptr) R+ 2KA g, (ofpt1) @

2kA,,, exp {HA, } A—2kA,, exp {— HA,} B+ (2k2—«% ) {sinh (H, ) C+cosh (HA, ) D} = 0,
(2«2 —«3,) exp {HA, } A+ (2k* —«k},) exp {—HA, } B+ 2xAg {cosh (HAg,) C+sinh (HA, ) D} = 0,

(14-6)
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 261

with a similar set of equations for f£,>¢>g,. These have a solution if the determinant of
the coefficients of 4, B, C, D, R, Q is zero, that is,

c<pfy:
h A=0= exp{HA,}[—4k*, A, cosh HAg + (2k2—«% )?sinh H, 1S
+exp {HA, } [46%A,, A5 sinh HA; — (2k*— &3 )>cosh HA, | T
+ [4xA,, (262 — k) V — 2k, (262 —3) Y ]
+exp{—H2,} [~ 4«2, Ay cosh HA, — (2k*—«3,)2sinh HA, | W
+exp {— HA,,} [4k*A,, g, sinh HA, + (2¢2—«3,)% cosh I’ﬂﬁl] U (14:7)
Bo>c>py:

A=0=exp{HA,} [4k?, A, cos Hly — (22 —«3)2sin HA, ] S
+exp {HA, } [— 4k, Ag sin HAg — (2 —«3 )2 cos HAg ] T
+[4kA, (262 —k3,) V+2A 5 (262 —£5,)% Y ]
+exp {—HA, } [4x2A,, A5 cos HAy + (2k2—k3 ) 2sin HA, 1 W
+exp{—HA,} [— 4k, Ay sin HAy + (262 —«3,)2cos Hl, 1 U, (14-8)

where S, T, W, U, V, Y are the 4 x 4 determinants.

c<fy: —K 0 —K —Ag,
B Ag, —K —A,, —K )
B —26h,, (2P —Kj)  26A,,p[0 (262 —K3,) o1ty ’
(2¢2— K,z?l) 0 (2¢2— K/ziz) Halth 2’01,32/‘2/:“1
—K —dg o —K 0
T Ay, o . .| W — Ay —K .
— 2k, o . ./ 2kA,,, (2*—x%) . . ’
(262—k%) 2&dg . . (2¢2—x3,) 0 (149
—K —Ag . — g, 0 o
U— — Ay 0 R 0 —K o,
2kA,, o . . 0 (2«2—«3) . .
(2k2—k3)  2kdg . . 2k g, 0
—K —K
Y — —/1“1 /10“
2, —2kA,,
(2/(2——/9%1) (2K2—/<§1) e

(the 3rd and 4th columns of T}, ..., Y are identical with those of S). When #,>¢>f, they are
the corresponding forms obtained replacing 4, in (14:9) by —1,,.

Equations (14-7) and (14-8) are the ‘wave equations’ determining the period 27/kc as
a function of the phase-velocity ¢. They can only be solved numerically and it is usual to

VoL. 245. A. 32
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262 MARGERY NEWLANDS ON A LINE SOURCE

give ¢ a series of values and solve for x. From the form of (14-8) and the multivaluedness of
the functions cos™! and sin~! it appears that x might be a multivalued function of ¢ in
f2>c>f. When «kH is large, an approximation to (14-8) is

— 1)} (1—%faf)} S~ (2— Y72 T

4 (c*/pt
2/02 _1\HL - i .
tan {kH ([} —1)} = 4(B—1) (1—c%ad) T+ (2—c2p2)2S (14-10)
=tand,, say (3n>0,>—1n),
O+ (p—L)m )
or kH = @1 (n=1,2,...), (14-11)
1-4—
I~ c=C=‘/82__.. ______ — e - —
1-3— | s,
— 1st mode Znd modeN, |3rd \|4th\[5t
1-2F olp, Cls, AL

< — p

g LI !

3" ) - c=C=p,

S 1ol | | O\ cy 013
0-90 Z 09194,
0-80—

1 | l Lot | I S I
0-2 05 1-0 20 3040 60 8010 20 30 40 60 80 100

kHe|f, (log scale)

Ficure 26. Phase- and group-velocity of Rayleigh waves in the first five modes of vibration.

Palpr=5/4 | ;=435
Pty = 20/9} oy =430,

X=u ) By=4/3p,.
and there is clearly an infinity of solutions. Numerical computation shows this to be so
throughout the range £, >¢>f,, each value corresponding to a distinct mode of propagation.
For ¢<f,, (14-7) gives a single value of k corresponding to a part of the first mode.

Values of kH were determined for the first five modes for ¢/f; at intervals of 0-01 (finer
intervals near points of inflexion and stationary points) and the results are tabulated below.

In figure 26 ¢/f, is graphed against «Hc/f,, the dimensionless quantity inversely pro-
portional to the period. For short period (and therefore wave-length) the phase-velocity
in the first mode approaches that of ordinary Rayleigh waves in medium I and for long
period that in the lower medium, II. The second and higher modes are characterized by
a cut-off period (which decreases for successive modes) corresponding to the phase-velocity
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 263

[, and above which no such surface motion occurs. In each, the period becomes infinitely
short as ¢—f,.

The approximation (14-10) for xH large (short periods) was found useful in obtaining a
first approximation to solutions in the second and higher modes. On account of the

SOCIETY

TaBLE 1
1st mode 2nd mode 3rd mode 4th mode 5th mode
¢ kH «H xH kH xH
1-333 — 2-455 6-022 9-587 13-15
o 1-:330 — 2-631 6-208 9-791 13-37
, 1-32 — 2-915 6-543 10-19 13-83
M 1-31 — 3-198 6-881 10-59 14-30
1-30 — 3-508 7-252 11-03 14-81
> 1-29 —_ 3-848 7-660 11-51 15-36
= 1-28 — 4-199 8-091 12-02 - 1595
45| 1-27 — 4-549 8-518 12-53 16-54
= 1-26 — 4-885 8-943 13-04 17-14
O 1-25 — 5-192 9-343 13-53 1772
O 1-24 — 5473 9-726 14-01 18-29
w 1-23 (¢ =1-2259...~kH = 0) 5-733 10-09 14-48 18-87
1-22 ' 0-062 5-979 10-45 14-95 19-44
1-21 0-181. 6-218 10-81 15-42 20-04
1-20 0-339 6-452 11-17 1591 20-65
1-19 0-534 6-684 11-54 16-41 21-28
5 1-18 0-746 6-920 11-93 16-94 21-96
1.17 0-987 7-164 12-33 17-50 22-67
1-16 1-175 7-418 12-75 18-10 23-44
1-15 1-333 7-684 13-21 1874 24-27
1-14 1-468 7-968 13-70 19-44 25-18
1-13 1-598 8-274 14-24 20-21 26-18
1-12 1-711 8-607 14-83 21-06 27-29
1-11 1-821 8-974 1549 22-01 28-53
110 . 1-924 9-383 16-24 23-09 29-95
1-09 2-026 9-849 17-09 24-34 31-58
1-08 2-127 10-385 18-09 25-79 3349
1-07 2-228 11-02 19-21 27-52 35-77
1-06 2-332 11-78 20-72 29-65 38-59
1-05 2-437 1275 22-56 32-37 42-18
1-04 2-548 14-02 25-02 36-:02 47-01
1-03 2-665 15-86 28-59 41-32 54-05
1-02 2-788 18-86 34-49 50-12 65-75
1-01 2-922 25-51 47-66 69-81 91-97
g 1-:00 3-:069 9] o) 0 00
! 0-99 3:233
{ 0-98 3421
0-97 . 3-638
0:96 3-918
- 095 4-249
0-94 4-724
0-93 5707
0-92 12-3
0-9194... )
decreasing ‘cut-off period’ it becomes more accurate over a greater range of ¢ as higher
modes are considered.
L In the first mode kH—0c0 as ¢—0-9194 ... f,, and the corresponding approximation for
° short periods as derived from equation (14-7) is
—2/B2)2 — 4 (1 — 2/R2)} (1 — c2/a2)H] (S —
exp{—2«H(1 —c?/p})}} = [(2—c?p7)*—4 (1 —cp}) (1 —c*/af)] (S—T) (1412)

TP+ —p) A= ad) ] (S+T)"

32-2
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264 MARGERY NEWLANDS ON A LINE SOURCE

The group-velocity was calculated by numerical differentiation of the tables of xH
against phase-velocity ¢, according to the formulae

. d d

(group velocity) C = I (ke) = H_KHd( ;{) , (14:13)
d(xH AL =3(AL, +A,

( <§6 ))0_— [AG(kH) — A5 (kH)], {Ag’o_ 1((A”l:——|i—_A”'§ (14-14)

with the standard ‘difference’ notation and where «H is given at uniform intervals of ¢.
As the period decreases kH changes so rapidly that numerical differentiation is inadequate,
but this is just the condition under which the approximations (14-10) and (14-12) hold.
Differentiation of these gives useful expressions for d¢/d(xH) as kH —c0.

In the second and higher modes we have

kH +[tan™t (T)S) — (n—1) @] /[*}ff —1]* =0,

yielding
Cde R ¢ tan~! (T78)—(n—1) 7 I 1 d(T/S)]“ (14-15)
d(«H) s L B} (c¢*[pt—1)} (14 72/82) (¢¥/pf— 1) ’
C—’ﬂl
and using the fact that
T/S = /T . % (a factor which does not vanish as ¢—f)),
this gives [ xHe ]_1
s KH) FA(IBT— s FERI)
= [kHe/[fi(c*/pt —1)]‘1, (14-16)
or Kfil—/cc = (¢2—f3}) /e, independent of mode (to the first order).
In the first mode
de
d(«H)xg=w
c—0:9194... B

2(1—If3) [(2— B2+ 4 (1—|fR)} (1—c*fad)] (S+T)
[ S B 4o AL — T 1 de (= A~ =T
x exp {—2H (1—c2/8})1}, (1417)

and as the period shortens the factor kxH ——+ (d 52 tends to zero like

kHexp{—2«H (1—0-9194...2)i},
It is seen that a pronounced minimum group-velocity is a feature of all modes, occurring
for periods given by
kH=292..., 797... 1275... (n=1,2,3,...),

and increasing from a value 0-801 .../, in the first mode to 0-866... 4, in the fourth and
thereafter apparently decreasing slowly but steadily. In addition, there is a conspicuous
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 265

feature occurring for relatively shorter periods which changes from an inflexion in the first
mode to a definite double ‘kink’ for higher modes. It appears that although the maximum
and minimum become sharper the ‘span’ of the kink contracts. It seems reasonable to
suppose that as #n becomes very great the peaks will coincide and the curve be smoothed
in that region.

In anticipation of their use in the application of these results to the problem of the gener-
ating pulse, values of dC/d(xc), d2C/d(kc)?, etc., were obtained numerically.

In an ideal system these surface waves, once generated, are capable of continuous
propagation. We shall now return to the problem of the cylindrical pulse and attempt to
determine the relative excitation of each mode by that pulse.

15. THE SURFACE-WAVE MOTION DUE TO THE LINE SOURCE

We return now to the problem of the line source. For an initial P-pulse the motion in the
surface-layer is given by

1 (do [~ A A : -
By=Py+5 fgjw f_wl:‘-* Zii exp{—(z—H) A, }+4 iexP{(m—H) /la,}] elwFild! (R(w)20),
(15:1)

= QmJ f—m[‘L“"Xp{ (z2—H)Ap}+ 457 DCXP{(Z H) A }]ew‘*lcxd«:( (0)20),
(15-2)

where @, A, ..., etc., together with the expressions for ® and ¥ in the lower medium, were

given in part I, § 3.
%ﬁz Kn,

(@) (b)

oL Koy Koy Key Kn

4

=
x
S
~N
=
8
&
[
f

Ficure 27. Limiting forms of the contour I' as the Q contour approaches the real axis.

If we suppose that the Q-contour approaches the real axis from below, then we must
consider the {-integrals for the limiting case of w real. We saw that for | |> 0 each of the
cuts #(4,,) = 0, etc., was part of a hyperbola in the fourth quadrant which now approaches
the bounding axes (figure 274). Since Z(4,,) = 0,%(A,,) = 0,%(A4,) = 0 only are singular
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266 MARGERY NEWLANDS ON A LINE SOURCE

lines with respect to the integrands (15-1) and (15-2), we mayin thelimitreplace the original
{-contour by a single loop Iy surrounding «,,, &,,, k4, on the real axis together with small
circles surrounding the poles outside I'. By considering I slightly deformed as in figure 27,
where the length ¢ is small but finite, it is seen that for large , by virtue of the factor e-i¢,
the main contribution from I'y must come from the small portions surrounding the branch-
points. Further, it is easily shown that these contributions decrease with distance at least
as fast as x~1. We shall go on to demonstrate that the contributions from the poles, on the
other hand, decrease like x~* or less rapidly, so that they must predominate at great distances.
It is on the basis of similar arguments that Pekeris (1948), Press ¢z al. (1950) and Longuet-
Higgins (1950) neglect entirely the branch-line integrals when considering ‘liquid-liquid’
and ‘liquid-solid’ systems respectively.

When w<0 the hyperbolas #(1,,) = 0, etc., approach the bounding axes from within

 the first quadrant, but the conclusions reached are identical.

We shall now consider in detail that part of the disturbance contributed by the poles.
Since @, is regular everywhere the poles of the integrands (15-1) and (15-2) are the zeros
of A, which we may denote by «,(w). Thus at great distances we have approximately

¢: %le“ [4%6Xp{—(z—H)/1“1+42—exp{(z H),{ }:,eleF1§xd£ (@( ) 0),

upper (15-3)
layer |

Yy ¢=:F211f |:4 Cexp{—(z— H)/Iﬂx}+4 Dexp{( —H)A, }]elmﬂzlgxdg (2(0)20),

(15-4)

these being the solutions appropriate to steady-state propagation of harmonic compressional
waves period 27r/a) from the line source. Generalizing to the unit pulse it follows that

o B iwtFigy
2m ) — @ J‘m, 2[ A exp{—(z—H) ’lal}‘l“l CXP{(Z H)2A, }]e iFige ¢,
upper | . (15-5)
layer 1 r® do 17, A, A, .
- é_ﬁf—-oo—cj zr,.$§i [4&;exp{—(z—-1—1) Aﬂl}+4EeXp {(z—H) Aﬂl}] elwrFitr d¢,
(15-6)

with similar expressions for ¢, ¥, ®, ¥ in the lower medium. As this investigation is
primarily aimed at explaining the complexities of seismograms obtained at or near the
earth’s surface, these latter expressions will not be discussed further.

In this consideration, o is real and the factor e~* shows that wave systems with {-complex
will be attenuated exponentially with respect to x. We therefore are interested only in poles
lying on the real axis and such that {> Kp,e Since A, is seen to be identical with the deter-
minantal expression A arising in the discussion of the free-surface waves, the problem of
determining the poles has been solved and the relation between the two studies becomes
apparent.

To standardize the notation we shall henceforth write « for { (the use of { in the earlier
theory was prompted by the need for a symbol conveniently written in two parts, real and
imaginary). As the A, occurring in the problem of the initial S-pulse is also identical with
A the suffixes p.and s will be suppressed.
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 267
Using the theory of residues, (15-5) and (15-6) reduce to

b= f _lz[akA—, exp{—(z—H) /1“1}—|—4 Zexp{(z—H) /Ial}] i exp {iwt Fik, x}
(Z(w)20), (15°7)
J_w_li ?[43—, exp{—(z— H)/Iﬂl}-l-ziA exp{(z—H) A, }:I exp {iwt F ik, x}

(95’(60) 20), (158)

where A= (gﬁ) (15-9)

and the summation extends over all the poles «, of A = 0 for each value of w. The fact that
the many solutions «, for any one w correspond to distinct modes of propagation (i.e. ,,
for a given n, varies continuously with w) permits the order of summation and integration
to be reversed and (15-7) and (15-8) written

o-3("13 xp{i(wﬂ:x,,x)}%“’ (#(0) 2 0), (15-10)

Yoy f 1) ¥, expli(0tTx, x)}——— (R(0) 2 0), (15:11)
where ¢, is the expression
[(44,/A) exp{—(z—H) 4, }+ (485/A") exp{(z—H) 1,,}]
expressed as a function of  at a pole «,(w) ; similarly ¥,. Thus
c<fy:
NG = dexp{— (h+2) A, }{4(?;, exp{HA, } (S cosh HA, — T'sinh H),)
—20(202—«},) V+{A4,(202—43,) YA,
+} exp{—HA,} cosh HA, [4{20, W— (202 —«3)2 UJA,,]
+}exp{—H2,}sinh H\, [ — 4020, U+ (202—3,)2 WA, ]}
+aexp{—(2—h) 4, }{ =, (232 —},) Y/A,,
+3exp{—HA, }cosh HA, [ — 404, W (202—«3)2 UJA,, ]
+3exp{—HA, }sinh Hl, [40%0, U— (202 —«%)2 W/A, 1}
+aexp{(z—h) A, } {484 exp{—HA,} (— W cosh HAgz + Usinh HA, )
(20— i3) ¥
+3exp{—HA, }cosh HA, [4{%A, W+ (202 —«5 )2 U/A,,]
+4exp{—H2, }sinh Hly [ — 48, U— (202 —«3,)2 WA, 1}
+dexp{(h+2)A,} {Fexp{—HA,}cosh HAz[—4{%, W—(202—«5)2 UjA, ]

+4 exp{—HA, }sinh HA s [48%5 U+ (282 —5)2 WA, 1}
(15-12)
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268 MARGERY NEWLANDS ON A LINE SOURCE
Ay = 4sinh (H—2z) A5 exp{—hd,} {20(202—«3,) (exp{—HA,} W—exp{HL,}S)
— 425 sinh HAp Y
+$Y[4{%A4 sinh HAp — (202 —«% )% cosh (HAz ) [A,,]
+ W[ —4{(20*—«3,) exp {— HA, }]}
+4sinh (H—z) Ay exp{hd, } {3Y[—4{%4 sinh HAg + (202 —«3 )2 cosh (HAg ) /A,,]
+ WAL —3,) exp {— HA, )]}
+4 cosh (H—2z) Ag exp{—hA, }{20(20*—«5 ) exp {HA, } T’
—2((202 2 13) exp{—HA,}U
+4§2A5, cosh HA, Y
+$Y[— 48245 cosh HAy (202 —«% )% sinh (HA, ) [A,,]
T RUTH(20 43,) exp{—HA}]}
+4 cosh (H—z) A5 exp{hd,} {3Y[4{?As cosh HA, — (202 —«% )%sinh (HA, )/A,,]
UL 4202 —3,) exp{— HA T} (15:13)
fo>c>pf:

AP =dexp{—(h+2)A,} {402, (—Scos HAp+ T'sin HAp)
—2(20—3) V—C,, (20 —3,) T,
+3exp{—HA, }cos HAg [ — 402, W—(202—«%)* U/A,,]
+ §exp{—HA, }sin HAg [40%0, U—(202—«5%,)2 WA, 1}
Faexp{— (=N AL CO—-B) YA,
+§exp{—HA, }cos HA, [4020, W+ (202 —k5,)2 U7, ]
+}exp{—H2,}sin Hly [ — 4022, U+ (202—13)2 W/A, 1}
+dexp{(z—h)A,} {402, exp{—HA,} (W cos HAy — Usin H,)
+al(20—i3) V
+%exp{—HA,}cos H?{ﬂl[—cxgﬁﬂl W (202—«5)2 U[A, ]
+ 4 exp{—HA, }sin HA, [4024, U+ (202—«3)2 W/A, ]}
+4exp{(z+h)1,} {}exp{—HA,}cos H/T,,l[z_zgzzﬂl W—(282—«%)2 UJA,,]
+}exp{—H2A, }sin Hl, [ — 402, U—(202—«3,)? W//lul(]}; 9
15-1
A'Y = 4sin (z—H) 1, exp{—h,} {2{(22—«3,) (exp{—HA, } W—exp{HA,}S)
+4825 sin HA, ¥
+3¥[— 482, sin HAy — (202 —«3,)2 cos (H2p)/A,,]
| + AW —4L(20— k3,)] exp{— HA, )}
+4sin (z—H) iﬂl exp{fd,} {3Y[4{?A, sin H/Tﬂ]l + (282 —«%,)? cos (H/Tﬂl)//lal]
- IWAL(20— 3, exp {— HA )T}
+4cos (z— H) 45, exp{—h, }{2{(20*—«%,) (exp {HA,} T—exp{—HA,} U)
—4{% cos HAy Y
+ 3 Y[4{2A,, cos HAy — (22 —«3,)?sin (H1g) /A5,
U0 3,) exp{— ELY])
+4cos (z—H) /lﬁl exp{fd,} (3Y[—4L, cos HAy + (202 —«k3,)2sin (Hz,) /25,
UL 420~ 3,) exp{— HA T (1515)
and S, T, W, U, V, Y have been defined in (14-9). We refer only to conditions in the surface-
layer.
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The displacements corresponding to the unit P-pulse are then

U=n3 :[ﬂ:ﬁn] exp {0t T ik, (0) x}%ﬁ’ (B(0)>0), (15-16)

W= [ [w] expliorFic, o) 5%

= WZJ‘” glwg[iwn] exp {iwt Fik,(0) x+idn} (%(0) Z0), (15-17)
07,

where 5 = K¢n___a§_i_, (1518)
_ 3,

w, = %_K¢n' (15,19)

Exact evaluation of the integrals (15-16) and (15-17) in terms of known functions is
impossible, but they are of the type suitable for the application of the methods of ‘stationary
phase’ or ‘steepest descent’. It happens that the line of stationary phase coincides with the
real axis, but so long as no singularities are included between the stationary-phase and
steepest-descent curves the methods must be equivalent. Jeffreys (19264) and Pekeris (1948)
developed ‘stationary phase’ for problems of this type and it will suffice to state the essential
results.

Suppose we have an integral in which the exponential part oscillates rapidly compared
with the remainder of the integrand so that the main contribution must come from regions
of stationary exponent. Then

| f :Q(a))exp{i(wt—/c(w)x)}dw:%Q(wn) Jﬁr@!exp{i(wnt—Knxiin)}, (15-20)

where «” denotes d%/dw?; the upper or lower sign is taken according as «”"(,) = 0 and the
summation extends over all v, satisfying

(G 1 -5 (15:21)

The condition for the validity of (15-20) is expressed by
| (/%) ("2/k"3— 15k [k"?) | <1. (15-22)

Near a zero of «”, that is, when %/t = C, a stationary value of group velocity, we must use
another form of approximation. If positive values w,, «, correspond to the stationary group-

velocity C, and we define
a=t—xky=1t—x/C,

b =—%xkg >0, minimum 15-53
<0, maximum ( )
¢ = — e,
then
© ) ?T .
_wQ(w) exp {i(wt—«(w) x)}do ~ 4Q(w,) [T(a, b) cos (Wgt—kyx) +c¢ 929550 (a)ot—/cox)] )
(15-24)
where T— T B, ZT _T g (15-25)
3(20)* > dadb b3 ’ :

Vor. 245. A. 33
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270 MARGERY NEWLANDS ON A LINE SOURCE
and v=2|al3./3]b}, (15-26)
E(v) = o' [J_4(0) +J3(0)],  #<%/Co,mins #>%/Co max.
E(v) = v*[L_y(v) —L(v)], t>x/CO,min.9t<x/CO,max.9}
G(v) = (34/4) { =30 [J_4(v) — J3(v) ]+ 30 [ 4 (v) + J3 () 1}, t<x/CO,min.’t>x/CO,max.’}
G(v) = (3%/4) { =30 [L_4(v) = L(0)] + 30" [L4(0) —L,(v)]},  ¢>%/Co, min.» £<5/Cy, max..

(15-27)

(15-28)
Hence jo Q(v) exp {i(wt—kx)}do ~ 4:§7II—Q2—(5@|°—3 E(v) cos (wyt—ky%), (15-29)
provided 28G(v) ¢/ E(v) < 1. (15-30)

In arriving at the result (15-29) it has been noted that to every positive w, corresponds
—w, with the same stationary value of group-velocity.

Now apply (15-20), (15-21) to the evaluation of (15-16), (15-17), the integrals for U, W,
noting that the values of » for which x/t = (d«/dw)~! occur in pairs +w,.

Further, since « is an odd function of v, ¢ is even and (dC/dw),, = —(dC/dw)_,, . Adding
the contributions from 4-w,, the displacements are

U=23J@nfx| ) [@(0,)[0,] cos (0,t—r,x—3m)  (k>0), (15-31)
= 2 J(2n/x| &y |) [G,(w,) /0,] sin (0, —k,x—3m)  (k5<<0), (15-32)
W= ZW(%/xIKZ ) [@,(0,) [0,] cos (0,8 =k, x+4m)  (k5>0), (15-33)
= é 34/ (2n/x |k, [) [@,(w,) J0,] sin (0,8 =K, x+4m) (k5 <0), (15:34)

where contributions from more than one positive value of w, are to be superposed. These
approximations are valid so long as (15-22) holds. Since ¥ is assumed reasonably large, we
need only amend them near points of stationary group-velocity C, (k; = 0), that is, for times
near 4, = x/Cy. Then we use (15-24) and (15-26) yielding

_2mx 1 d2C|*a,(w,) . '
U=3ilgoeaz|, o, Cw)sin(ol—k), (15-35)
o2n|x 1 d2C|tw,(w
W=si\moa), afo") E(v) cos (wpt—Kox), (15-36)
where C, @ and v are the dimensionless variables
C = CJp,,
7 h } (15-37)
o = kHelf),
_2/2] 1 d%CP (x) [t—4, ]
3 |C2da? (H) zﬂlo sty =x]fy (15-38)
; 1.d3C | 1 d*)C|Hy G(v) ‘
and provided (H) {UZ(W/ 2 dat } E(v)<l (15-39)

Pekeris (1948), dealing with two liquid layers, called the disturbance associated with a
stationary group-velocity the ‘Airy phase’. The term will be used here. The motion is
characterized by its regular period, namely, that corresponding to the stationary group-
velocity.


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 271

Graphs of E(v) and G(v)/E(v) in the neighbourhood of v = 0 are reproduced from Pekeris
in figure 28; the first determines the envelope of the Airy phase apart from a factor constant
for a given x, the second the range of validity of the approximations (15-34) and (15-35).

The striking distinction between the Airy phase and the disturbance which leads up to
it lies in the differing rates of attenuation with respect to x. The Airy phase diminishes with
distance as ¥~* and the rest as 7%, so that although the Airy phase is certainly decreasing in
intensity it becomes more and more the dominant feature.

06
04
0-2
0
-0-2
0 1 | | | | ! | | | —0-4
2:0 12 04 0 04 1-2 2:0
t< tmin. v t> tmin.
t> tmax. t<itmax.

Ficure 28. Envelope of the Airy phase (from Pekeris).

Weshall discuss (15-35) to (15-39) (the expressions for the displacements and the governing
condition) with reference to the minimum of the first mode, since it is a feature characteristic
of all modes and, it seems, of the group-velocity curves derived in any problem of this type.
Provided (15-39) holds, the expressions for U, W may be used for #<{, and ¢>¢,. When
t<t, there is the alternative approximation (15-20), and as the range x is increased and
(as we shall see) the range of validity of the ‘Airy’ approximation closes in on ¢y, so this
approximation is valid closer and closer to £, When #>¢, there is no alternative and we
must consider the importance of the G(v) term, although the failure of the Kelvin approxi-
mation is a fair indication of the relative insignificance of the after effect.

First, it may be remarked that the actual peak in the amplitude occurs at an instant
preceding £, and given by v = 0-68. The ‘relative time’ | (£—1y)/¢,, | is related to » through
(15-38), and we see that

| (£—12o)[ts, | oc (x/H)™ (15-39)
Such an interval corresponds to n complete oscillations (period 27/k,C,), where
n=(t—1t,) k,Co/2moc (x/H ). (15-40)
. 1 d2C
Using Car = —0-52,
1 d3C
Cides 0%

33-2
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272 MARGERY NEWLANDS ON A LINE SOURCE
as obtained for the first mode, we find that
(1) for (x/H) = 100: | (t—1)[ts | = 0-057, n = 2-7 oscillations,
(2) for (x/H) =1000: | (t—12)[ts | =0-012, n = 58 oscillations.
Now consider ¢>¢#,. From the relations (Watson 1922, pp. 78 and 202)

I_,—1I = 2(sinvn/m) K, 15-41)

(
(

K,~ (2) (n/22)}e=2[1+ (402—12)/1182+.. ], 15-42)
we have that for v sufficiently large (v>>4 is adequate) an approximation to G(v)/E(v) is
G(v)/E(v) = 3% (v—%)/8. (15-43)
~27osclln—
Air§)
phase

ﬂ ~—A44osclln——

‘G’ phase
Q/Coﬂ /\f\ﬂﬂ/\r\/\,\h
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Ficure 29. Displacement near the Airy phase: x/H=100.

Thus if (15-39) ceases to be valid when the left-hand side of (15-43) is 4, say, then this deter-
mines a v proportional to (x/H)* (neglecting the £ compared with v) and from (15-38) we
see that this corresponds to an instant ¢ such that

| (t—1,) [ts, | oc (x/H)™H. (15-44)

The actual time interval (¢—#)), measured by the number of complete oscillations, is,
however, proportional to (x/H).
When neglect of the G(v) term is no longer valid the left-hand side of (15-43) gives just
1 d°C.
02 dw®
must occur a value of v, that is, an instant at which the resultant amplitude is zero. This is
found to occur
(1) for x/H = 100: when v = 6-25, ({—1)/t, + 0-107,
or approximately 4-4 oscillations after ¢,
(2) for x/H = 1000: when v = 10-2, (¢—1,)/t5 + 0-032,

or approximately 13-2 oscillations after .

the ratio of the G(v) and E(v) terms, and, since — is positive in our problem, there

The amplitude should then increase slightly to a maximum then fall off exponentially
governed by G(v). Figure 29 shows the theoretical trace of the Airy phase for the case
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x/H = 100; the vertical scale is exaggerated to the right for convenience. The ‘G’ phase
is introduced. It may be verified at this stage that neglect of higher-order terms in the
original integrals is still justified.

If we take i5th of the maximum amplitude to be an estimate of the least perceptible
displacement, then before the zero point Z is reached the modulus of both the G(v) and
E(v) parts for x/H = 100 will be well below the limit of perceptibility. But it is seen from the

1 d*C
equation (15-39) that the value of v determined is very sensitive to changes in —; a2 and

— CZ
:(,_‘1_23_;? as well as in x. A change by a factor of two only might bring the ‘G’ phase within the
recordable range even at the distance x = 100H. This feature should not be confused with
a secondary Airy phase due to a multiple explosion. If magnitude alone does not dis-
tinguish the two there is the time of arrival. An ‘after-shock’ makes itself felt at a fixed time
after the main shock; the feature under discussion, or more exactly the zero amplitude
which precedes it, occurs at a time after ¢, proportional to (x/H).

Puzzling features of seismograms are the long trains of regular waves—regular in period
and amplitude—which are frequently found to follow the Airy phase. The discussion above
shows fairly conclusively that the explanation is to be sought in some external mechanism
of which this theory does not take account. Suggestions that they represent the free vibra-
tions of the ground on which the observation point is situated relative to the main earth
mass invite some justification.

The equations (15-31) to (15-36) were used to calculate the dlsplacements contributed
by successive modes; period-velocity relations, including values of «y, ..., ¥ for all w and
in the first five modes of vibration were read from an extended table 1 and figure 26. In
the first and second modes, which each show a single stationary value of group-velocity
(a minimum), U and W were determined completely for sources located in the layer close
to the free surface, at a depth $H, and near the interface, and for observation points at
horizontal range x of 100/ and 1000H4.

Owing to the form of the expressions for U and W, the determining influence of negative
exponentials like exp { — /4, }, and the steady decrease of associated period, the contributions
from successive modes rapidly diminish; but the earliest arrival from the first mode is at
t =x/0-9194 ... f,, whereas from the second and higher modes it is at ¢ = x/f,, so that at
least until shortly after ¢ = x/0-9194 ... f, the second mode contribution should be significant.
Moreover, as the respective values of minimum group-velocity are quite distinct, that of
the second mode exceeding that of the first, the Airy phase of the second mode may well
be distinguishable as a prominence preceding the Airy phase of the first mode. The con-
dition would be that x be sufficiently great for the additional power of x* associated with the
Airy phase to more than counterbalance the general amplitude decrease with z referred
to above.

Figures 30 to 34 shows the displacements as functions of period and against time; one
unit on the vertical scale represents a convenient dimensionless multiple of (L?/H), where L
is the unit of length and H the layer depth in terms of these length units.

For a surface explosion and surface observation point, i.e. putting % = 0, z = 0, the
calculations recorded an infinite displacement corresponding to the very short period waves
arriving at ¢ = x/0-9194 ... £, in the first mode and at ¢ = x/f, in the second and higher.
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2:0— _

1.5 -

1-0 /=100
050 @woo
I | I l | l |
02 03 04 050607 02 03 04 050607
—kecH[2mp,; (log scale)
() (6)

Freure 30. Displacements as functions of 1/period: first mode, 2=0, z=0, £,/f,=0,/a;=4/[3,
(@) horizontal, (b) vertical (broken line represents modification for 4 small but non-zero).

0~35T—' r
0-25— =
0-15— , —
0-05
| [ | L1 1 1
0-6 09 1215182124 06 09 12 15182124
—kcH /2w, (log scale)
(a) ()

Ficure 31. Displacements as functions of 1/period: second mode: h=0, z=0, f,/f, = ayfo; =43,
(@) horizontal, (b) vertical.


http://rsta.royalsocietypublishing.org/

p
A
JA '\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
V. \
b

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER

1-25— 2-50r—
1-001— 2-00—
h=0 ,
0-75— 150
050 i 1:00
i
0-251- NN 0-50
h=HJ2
| I I l
02 03 04050607 02 03 04 050607
—kcH|2mp, (log scale)
(@) (6)
Ficure 32. Displacements for different depths of source: first mode, x/H =100, z=0,
BalBy=ctyjo, =4/3, (a) horizontal, (b) vertical.

0-15— 0-30—

0-10— 020

0-05— 0-10

0
—0-05— \ =010~
-0-10 ~0-20}
015/~ | ~0-301
I I L1 1 111 I l L 1 1111
0-45  0-60 090 12 1’5 1-8 2124 045 060 0-90 1-2 1-51:8 2124

—kecH|[2np, (log scale)
()

(6)

Ficure 33. Displacements for different depths of source: second mode, x/H =100, z= 0,
BalBy=0ay/c; =4/3, (a) horizontal, () vertical.
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This suggests the failure of the solution to represent the actual conditions. Press ¢t al. (1948)
encountered a similar difficulty in treating the liquid-solid case.

On a physical argument, the case of an explosion about a line in the surface must present
a vastly different problem from that of one occurring at some depth; in the latter we are
justified in assuming an initially symmetrical, cylindrical spread of energy appropriate to
the elastic medium I, and, implicit in our theory, no permanent change of form of the
surface. When the axis of the explosion is in the surface no such simple spread of the energy
could take place since much of it is lost to the free space above.

2-0r— _ 0-40
: B
|
1-5 0-30/— :
1-0 0-20— ﬁ
!
0-50— 0-10—
| | !
0 075 0 06

> (t=tg) [tp,

(@) (6)
Ficure 34. Displacements as functions of 1/period: first mode, 2= 0, z=0, f,/8, =a,/a,; =4/3,
(@) horizontal, (b) vertical.

Our method of solution was to let @, represent the initial cylindrical explosion of the
pulse in medium I, and to this we added —®,, equivalent to an equal and opposite pulse
at the image position; in this case they are superposed and the combined effect is nil. We
proceeded to add @ and " to satisfy the boundary condition of zero stress at the surface,
which for a surface origin must be contradictory. Despite this, if the mathematical solution
for & = 0 gave the limit of the disturbance as / tended to zero then it would have physical
meaning and would, in so far as we gave it this interpretation, be valid. We shall see that
this is not so for kH very great but it is not difficult to estimate the deviation and the effect
of a positive depth # however small. It is® and ¥ which provide the normal mode motion.
The amplitudes are determined through the terms in the boundary conditions contributed
by ¥, and given by a column vector (see p. 219) which for convenience we shall write as

(—«sinh (AA,,) exp {—HA,}/A,,; —sinh (kd,, ) exp{—HA, };

2« sinh (#A,,) exp{—HA,}; (22 —«3,) exp {—HA, } sinh (hd,,) /A, ;
—2cexp{—hl,}; 0).

Since these terms are derived from ®,, and its derivatives, and we saw that for 2= 0
®,, is zero, these should all be zero; but the boundary conditions have been so formulated
that putting # = 0 in the above we obtain

(0, 0, 0, 0, —2«, 0) for all xH.
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On the other hand if 2> 0 but very small the value changes from (0, 0, 0, 0, —2«, 0) for
long periods to (0, 0, 0, 0, 0, 0) for infinitely short periods, so that it is not surprising that
putting 2 = 0 we derive, wrongly, infinite displacements for the very short periods.

Closer examination of the U, W expressions shows that # = 0 gives the limit as 2—0
unless kH is very great, and then the substitution ‘4> 0, but very small’ ensures the vanishing
of the displacements for very short periods. The dotted line in figure 30 shows the effect
of a small positive # on the U, W calculations for z = 0.

It might appear that # = H defines another case where it is not physically possible to
have the initial symmetrical energy-spread in medium I as assumed in the theory, for the
pulse would here be right on the interface; but we can show that for all periods the solution
represents the limit as #—> H from within the surface layer and so has a physical meaning
and, thus interpreted, is valid throughout.

To check some of these arguments quantitatively we must study the limiting forms of
the expressions for U, W as kH—o0. This can be done through the following considerations.

In the process of calculating U, W numerically we must evaluate (dA/dk),,. As a function
of k and w, A’ contains these variables in coeflicients and exponents; as a function of « and ¢
it contains « only as factor «!° and in the exponentials exp {—«H /(1 —c?/a})}, etc., and it
is easy to write down the expression for (0A/dk),. For ¢<f, it is given by

(g%)c = (H[x){[ — 4k, A 58— (262 —«% )2 T[4, exp {HA,,} cosh HA 5+ A5, €xp {HA, }sinh HA 21
+[46%4,, Ag, T+ (26%—&5,)2 ST [A,, €xp {HA,,} sinh HAy 415 exp{HA, } cosh HA, ]
+ [ — 4%, Ap W+ (26* — &5 )2 U] [ — A, exp{— HA, } cosh HA g + A4 exp {—HA, }sinh HA, |
+[4622,, 45, U— (262 — 15 )2 W] [ —A,, exp{— HA, }sinh HA; A, exp{— HA,} cosh HA, ]}.

" N (15-45)
Now 0 oA ) de
(3e). = o). (3), G, (1654)
and we have tabulated ¢ against « satisfying A = 0, so that along the «-¢ curve of any mode
oA oA
SA =0 = (7?;)cd/mL (B—C)ch. (15-47)
oA aA de\ (d«
herefore (@), = (3.~ Gd. @), ]
curve A=0
A [ C
- (7?2) = (15-48)
We shall now confine attention to the first mode in which «H->c0 as ¢— 09194 ...4,, the
solution of (2—c2/f2)2—4(1—c2[f2)t (1 —2/ad)t = 0.
In (14-17) the limiting form of «(d¢/d«) for xH large is given, and it is seen that it tends to
zero like kH exp {—2cH(1—0-9194 ...2)}}. (15-49)

Thus C may be replaced by the limiting phase-velocity. From (15-45) it is seen that the
important terms of (JA/dk), are

3 exp {HA,,} (Hx) [exp {HAp} (S—T') (A5, +Ap,) {(26* — &, )? — 4> (1 — o)t (1 —c?/5})}
+exp{—Hg} (S+ 1) (Ag, =g ) {(26% —13,)% + 4> (1 —c?/ad)* (1 —¢?7) 1],

VoL. 245. A. 34
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278 MARGERY NEWLANDS ON A LINE SOURCE
and since (262 —«3 )2 —4k?(1 —c2faf)t (1 —c2[f]) 0 like exp{—2HA, }, (15-50)
50 (%) oo like £%exp {H (1, —1,)}. (15-51)

For a surface observation both A’U and A’W have predominant terms varying as
&9 exp {H(A,, +A4,) — kA, }; combining this result with (15-49) and (15-51) we see that our
theory gives U and W varying, for large «H, as kHexp {—«h(1—0-9194 ...2)}}. Thus for
any positive £, however small, both U and W tend uniformly to zero as the period becomes
infinitesimally short; but for 2 = 0 we derive infinite displacements and the solution is
invalid.

By the same methods we may show that

lim (_”f) _ (2B —2(1—c/a})! (1 —c?/pp)
Ulszo (1 —=e2Ip)! (2—c*/p7) —2(1 —e?[pp)*°
650919441
=—1-468 ..., (15-52)

the value obtained for Rayleigh waves in a uniform semi-infinite medium of the material
of the surface layer.

Similar arguments may be applied to the second and higher mode solutions for which
c—>p (Zﬁl»O) as kH—oo. T, U, V all tend to zero as ¢c— /4, but T/d,, U/Xﬁ1 and V/Zﬁ,l are
finite and non-zero.

The wave-equation takes the limiting form

— A, [(2— B2 T[Ap — 4 (1 —c?o)} (¢*/f3—1)}S]

tan HA, = (2—pPES (15-53)
and the right-hand side approaches the value —3:256 ... 1, as ¢—f,. Further,
i (_141) _ [24,,45,5 — (2/<2—/<%1)- T]+ [(2/<2—/<2:1) S+24, 25 T tan H,, (15-54)
UJ,-0 Ag (S—T'tan HA,)
K>
Ap,~>0

and here the right-hand side approaches the value 1-633....

We have assumed in this treatment that the initial pulse is of P-type. Whereas this is
probable true of experimentally produced explosions it is well known that natural earth-
quakes are rich in distortional waves. We saw, however, that the principal features of the
surface-wave pattern are characteristic of the system and independent of the generating
explosion—the arrival times of the long and short waves in the first mode, the cut-off
velocities and periods in the higher modes, the location of the Airy phase and its eventual
predominance. The corresponding analysis for an initial S-pulse may therefore be expected
to reveal only minor differences in the form of the displacements.

16. THE GENERATION OF LOVE WAVES

We have so far considered only a line source of P-waves and what are actually SV-waves
with cylindrical symmetry.

The disturbance due to a spherically symmetrical source of SH-waves in a surface layer
was considered by Jeffreys (1931) using the expansion method of Sommerfeld. He identified
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IN AN ELASTIC MEDIUM WITH A SINGLE SURFACE LAYER 279

successive pulses with the reflected and refracted paths of the ray theory and attempted
to recombine certain of these to reproduce the dispersive train of Love waves, in whose
generation he was primarily interested.

For completeness the corresponding analysis for a line source of SH-waves will be briefly
outlined. With the elastic system of figure 1 we wish to consider the motion due to an initial
uniform disturbance along the line x = 0, z = A. This may be written (0, V;, 0), where we
suppose that V varies in time like a unit Heaviside function.

The equations of motion reduce to the single equation

%

KV = pams (16-1)
of which the appropriate solution, varying in time as ei“, is
vy = Mk, H; (k5 @) €1, (16-2)

which may be written (§2)

vy = 2ikp, f: exp{—(h—2) Aﬂl}COSng«g el (0<z<h)

Ag,
_ 2iKﬂlJmexp{~(z~h) Az} cos gxf_c et (h<z<H), (16:3)
0 b1
and ¥, is derived from v, through the relation
1 do
Vozﬁfgvo—(;)‘. (16 4)

The constant 7 in (16-2) is introduced for algebraic convenience and the factor ;4 to bring
the dimensions of v, in line with those of ,, w, of the earlier work.

Adding an equal source at the image line, x = 0, z = —h, we ensure the vanishing of the
only surface stress which is not identically zero; satisfying the continuity conditions at the
interface we finally find that the disturbance is given by the sum of displacements

Vor = Vo+0, = 4ikg, f:exp{—hiﬁl}cosh (z44,) cos Cx%ei‘”‘ (0<z<h) (16-5)

_-z4i/<ﬁlfmexp{—2/lﬂl}cosh(lleﬂl)cosgx/%geiwt (h<z<H), (16:6)
0 £

and ) ©
v = 8iky, fo cosh (zA,,) cosh (hd,,)

— 'ul/lﬂl_l_'u?_/l/ﬁ__ — ]—1 (R .
X exp{—2HA, } iy — iy, exp {—2HA, } cos{j’x/l e, (16-7)

A
Expanding (16:7) in negative powers of the exponential we have
v=2iky, 3 [ Texp{(h+2)2,) +exp{— (h=2) dp}exp (2= B) Ay} +exp{—(h2) )]
X qrexp {—2nHA4 } cos Q’x/cli—g eiv, (16-8)
® s
= 2 U, say, 1
n=1

where g = (g, —taAg,) [ (1 A5, + 1A ,) (16-9)

and the signs of the radicals are chosen so that % (4,,) >0, %(4,,) > 0.
342
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280 MARGERY NEWLANDS ON A LINE SOURCE

We now replace the real axis of { by the Sommerfeld contour, which consists of only two
loops surrounding the cuts #(4,,) = 0, Z(A4,) = 0 (figure 35); the radicals 4,,, 4,, do not
arise in this problem, and it is readily shown that the denominator in (16-7) has no zeros

which do not lie indefinitely close to the cuts.

0.

g
Kpy

I}g kg,
T3 I

1732 \ -Kﬂx
O ~Kﬁ2
(a) (b)

Ficure 35. Sommerfeld contour for initial SH-pulse, (a) Z(w) >0, (b) %(w) <O0.

Evaluating the integrals approximately by the methods of §9 we find that the con-
tributions from I'; may be written

= = (o) expliolt —xp— (21281} (0=zh),

) (16-10)
Voo = A/ (W) H(r), where 7= t—x/f,—(h—z)%2x5,,
0= = () o xp Golt—slfy — (h-+2)%124,),
\ (16-11)
V, s ::A/(W) H(7), where 7‘-—— t—x/f— (h+2z)%/2xp,,
g = (=0 (), 3, expliolt—uh,— (2nHdh2)24f,])
of sign (1612)

Vg = (—1)" A/(%)H(T), where 7= t—x/f, — (2nH 1 h-t z) ]2x,.

We see that V, , and V, ; are of the same shape as the initial pulse; each component
corresponds to travel with velocity £, along a minimum-time path involving 0,1,2, ...
reflexions at the interface. The factor (—1)” represents the change of phase on reflexion
at an interface. The approximations depend for their validity on x being sufficiently large
compared with £, z, 2nH for the main contribution to the integrands to come from the
immediate neighbourhood of the branch-point x4, and we have substituted actual values
at k4, in all but the exponents. We have thus suppressed the factor ¢” whose modulus is
everywhere less than unity (except at x4, and «,, where ¢ is —1 and 41 respectively) and
whose presence represents the decrease of amplitude associated with successive reflexions
at the interface. In terms of geometrical theory, we have chosen x so large that the angle of
incidence is sufficiently near 90° for the loss of energy to the lower medium to be negligible;
but for a given x, as the number of reflexions (given by #) increases, the angle of incidence
decreases and the energy loss may not be disregarded.
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Neither V; nor V, contains the radical 4, so that no contribution is derived from I,
Close to k4, we may write

(9)" = [(m g, — a2 p) [ (111 Ag, + 112 25,) "
= 1—2np, g, 101 A5, (16-13)
and the part containing A, provides the only contribution to V, 4, from I'y,. We find

M\ Ny K ——
e P

x exp {iw[t—x/f,— (2nH +h+2)]/51 02}
v,

2K p nELhizf B) -t
npe = 42— o= ($fy—2nHLhL2f,f,) 7 H(r),
HiKgy-Kg, p - A~
where 7 =t—x/fy—2nH+h+z[ff,.

Each component is a sharp pulse whose travel time corresponds to a minimum-time path
in which the disturbance travels most of the way with velocity 4, in the second medium,
being refracted at grazing angle along the interface. The value of » determines the number
of preliminary reflexions from the interface in the surface layer (figure 36). The displace-
ments rise steeply but smoothly from zero; the velocity varies like the initial displacement ¥V,
suddenly acquiring a great value at the onset time and thereafter decreasing.

L (16-14)

Ficure 36. Travel paths of the (a) V), g~ () V,, p-pulses, n=1, by =0, hy=2H+n+z.

We note that these contributions have all the same sign and are therefore cumulative;
it was to these that Jeffreys looked for the Love wave phase.

Alternatively the investigation of the surface waves may be approached directly, reverting
toreal w and, as in the case of initial P- and SV-pulses, considering only that part of the modi-
fied {-contour which gives significant contributions at great distances. A complete study
of the dispersive Love wave train will be reserved for a future paper.

17. EXTENSION OF THE THEORY TO MULTILAYERED SYSTEMS

It remains to consider how far this theory of a line source in a medium with a single surface
layer may be extended to multilayered media.

The pulse representation, we saw, has a natural extension to any number of layers. Pulses
should be felt corresponding to travel by every one of the minimum-time paths predicted
by the ray theory. Analogous diffraction pulses may be deduced.

At great distances interference between pulses becomes important and the dispersive
train of surface waves becomes the predominant feature; if we are to use records of this and
in particular of the Airy phases to deduce the nature of the material underlying a given
surface, then we must be familiar with the group velocity curves of a variety of media.
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282 MARGERY NEWLANDS ON A LINE SOURCE

The theory of Love waves in double- and triple-surface layers was given by Stoneley
(1937); the corresponding analysis for Rayleigh waves leads to a wave equation which is
intractable for even two surface layers. In certain cases, and for a limited range of period,
it may be possible to substitute for a multilayered system one in which the properties vary
continuously and some special examples of continuous variation have been treated by
Stoneley (1934), Pekeris (1935), the author (Newlands 1950) and others. The present
study would seem to stress the desirability of further investigation into the effects of hetero-
geneity.

I wish to express my thanks to Dr R. Stoneley, F.R.S., for valuable discussion and con-
stant encouragement during the course of this work; also to the Mathematical Laboratory,
Cambridge, for computational facilities and to the Department of Scientific and Industrial
Research for a research training grant which made the investigation possible.

APPENDIX 1. IMPROVED APPROXIMATIONS TO DIFFRAGTION TERMS

It is not a serious drawback that from the loops I'; and I';, we have, in general, been able
only to derive approximations to U and W and not to the horizontal and vertical displace-
ments themselves. Primarily, we are interested in changes in the displacements, since it
is these which show up on the seismogram and are of practical importance. On the other
hand, the results for I,U(‘*), [,W@, typical components, are seen to lack the sharpness of

0 N\ f\ro’ﬁ 2 /\Ib’ﬁ LN /R
A A

N N A

K’CLZ Kocl Kﬂz Kﬂl K‘Yl

Ficure 37. Limiting form of the loop I' when w is real.

contributions from I',, and T', ; for this reason it was considered advisable to attempt to
check the approximations by some independent method as Lapwood did when treating
what were actually the ,¢®, ,y®, 4B, YO terms in our problem. Follo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>